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Chapter 1

Topological Dynamical Systems

In the sequel, we shall use the following notations:

P(D) = the power set of D,

N = {0, 1, 2, . . .}, Z+ = {1, 2, . . .},
[m,n] = {m,m+ 1, . . . , n} for m ≤ n ∈ Z.

Definition 1.0.1. A topological dynamical system (TDS for short) is a pair (X,T ),
where X is a compact Hausdorff nonempty topological space and T : X → X is a continuous
mapping. The TDS (X,T ) is called invertible if T is a homeomorphism.

An invertible TDS (X,T ) gives rise to two TDSs, namely the forward system (X,T )
and the backward system (X,T−1).

If one takes a point x ∈ X, then we are interested in the behaviour of T nx as n tends
to infinity. The following are some basic questions:

(i) If two points are close to each other initially, what happens after a long time?

(ii) Will a point return (near) to its original position?

(iii) Will a certain point x never leave a certain region or will it come arbitrarily close to
any other given point ot X?

Let (X,T ) be a TDS and x ∈ X. The forward orbit of x is given by

O+(x) = {T nx | n ∈ N} = {x, Tx, T 2x, . . .}. (1.1)

If (X,T ) is invertible, the (total) orbit of x is

O(x) = {T nx | n ∈ Z}. (1.2)

We shall write O+(x) for the closure O+(x) of the forward orbit and O(x) for the closure
O(x) of the total orbit.

Furthermore, we shall use the notation

O>0(x) = {T nx | n ∈ Z+} = O+(x) \ {x} = O+(Tx) = {Tx, T 2x, T 3x, . . .}. (1.3)

5
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Definition 1.0.2. Let (X,T ) be a TDS. A point x ∈ X is called periodic if there is n ≥ 1
such that T nx = x.

Thus, x is periodic if and only if x ∈ O>0(x).
The following lemma is obvious.

Lemma 1.0.3. Let (X,T ) be a TDS and U ⊆ X.

(i) T (O+(x)) = O>0(x).

(ii) For all x ∈ X, O+(x) ∩ U 6= ∅ iff x ∈
⋃
n≥0 T

−n(U).

(iii) If (X,T ) is invertible, then for all x ∈ X, O(x) ∩ U 6= ∅ iff x ∈
⋃
n∈Z T

n(U).

1.1 Examples

Let us give some examples of topological dynamical systems.

1.1.1 Finite state spaces

Let X be a finite set with the discrete metric. Then X is a compact metric space and every
map T : X → X is continuous. The TDS (X,T ) is invertible if and only if T is injective
if and only if T is surjective.

1.1.2 Finite-dimensional linear nonexpansive mappings

Let ‖ · ‖ be a norm on Rn and let T : Rn → Rn be linear. Assume that T is nonexpansive
with respect to the chosen norm, i.e.:

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ Rn. (1.4)

Lemma 1.1.1. Let T : Rn → Rn be linear. The following are equivalent

(i) T is nonexpansive

(ii) ‖Tx‖ ≤ ‖x‖ for all x ∈ Rn.

Proof. (i)⇒ (ii) Take y = 0 in (1.4) and use the fact that T0 = 0.
(ii)⇒ (i) Since T is linear, ‖Tx− Ty‖ = ‖T (x− y)‖ ≤ ‖x− y‖.

Then the closed unit ball K := {x ∈ Rn | ‖x‖ ≤ 1} is compact and T |K is a continuous
self-map of K.

Hence, (K,T |K) is a TDS.
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1.1.3 Translations on compact groups

Let G be a compact group.

For every a ∈ G, let

La : G→ G, La(g) = ag

be the left translation. By D.0.7, La is a homeomorphism for all a ∈ G.

Hence, (G,La) is an invertible TDS.

1.1.4 Rotations on the circle group

The unit circle S1 = {z ∈ C | |z| = 1} with the group operation being multiplication is an
abelian compact group, called the circle group.

Since the group is abelian, left and right translations coincide, we call them rotations
and denote them Ra for a ∈ S1.

Hence, (S1, Ra) is an invertible TDS.

1.1.5 Rotations on the n-torus Tn

The n-dimensional torus, often called the n-torus for short is the topological space

Tn := S1 × . . .× S1

with the product topology. The 2-torus is simply called the torus.

If we define the multiplication on Tn pointwise, the n-torus Tn becomes another example
of an abelian compact group. For any a = (a1, . . . , an) ∈ Tn, the rotation by a is given
by

Ra : Tn → Tn, Ra(x) = a · x = (a1x1, . . . , anxn) for all x = (x1, x2 . . . , xn) ∈ Tn.
(1.5)

Then (Tn, Ra) is a TDS.

1.1.6 The tent map

Let [0, 1] be the unit interval and define the tent map by

T : [0, 1]→ [0, 1], T (x) = 1− |2x− 1| =

{
2x if x < 1

2

2(1− x) if x ≥ 1
2
.

(1.6)

It is easy to see that T is well-defined and continuous. Since [0, 1] is a compact subset of
R, we get that (X,T ) is a TDS.
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1.2 The shift

We follow mostly [71, Section 1.1] in our presentation.
Let W be a finite nonempty set of symbols which we will call the alphabet. We

assume |W | ≥ 2. Elements of W , also called letters are typically be denoted by a, b, c, . . .
or by digits 0, 1, 2, . . ..

Definition 1.2.1. The full W -shift is the set W Z of all bi-infinite sequences of symbols
from W , i.e. sequences taking values in W indexed by Z. The full r-shift (or simply
r-shift) is the full shift over the alphabet {0, 1, . . . , r − 1}.

We shall denote with boldface letters x,y, z, . . . the elements of W Z and call them also
points of W Z. Points from the full 2-shift are also called binary sequences. If W has
size |W | = r, then there is a natural correspondence between the full W -shift and the
full r-shift, and usually they are identified. For example, on can identify the full shift on
{+1,−1} with the full 2-shift.

Bi-infinite sequences are denoted by x = (xn)n∈Z, or by

x = . . . x−2x−1x0x1x2 . . . . (1.7)

The symbol xi is the ith coordinate of x. When writing a specific sequence, we need
to specify which is the 0th coordinate. We shall do this by using a ”decimal point” to
separate the xi’s with i ≥ 0 from those with i < 0. For example,

x = . . . 010.1101 . . .

means that x−3 = 0, x−2 = 1, x−1 = 0, x0 = 1, x1 = 1, x2 = 0, x3 = 1, and so on.
A block or word over W is a finite sequence of symbols from W . When we write

blocks, we do not separate their symbols by commas. For example, if W = {0, 1, 2}, then
blocks over W are 00000, 11220011, etc. We denote by ε the sequence of no symbols and
call it the empty block or the empty word.

The length of a block u, denoted by |u|, is the number of symbols it contains. Tus
|ε| = 0 and |u| = k if u = a1a2 . . . ak. A k-block is simply a block of length k. The set of
all k-blocks over W is denoted W k. A subblock or subword of u = a1a2 . . . ak is a block
of the form aiai+1 . . . aj, where 1 ≤ i ≤ j ≤ k. By convenience, the empty block ε is a
subblock of every block. Denote

W+ =
⋃
n≥1

W n, W ∗ = W+ ∪ {ε} =
⋃
n≥0

W n. (1.8)

If u = a1 . . . an, v = b1 . . . bm ∈ A?, define uv to be a1 . . . anb1 . . . bm (an element of
Wm+n). By convention, εu = uε = u for all blocks u. This gives a binary operation on
W ? called concatenation or juxtaposition. If u, v ∈ W+ then uv ∈ W+ too. Note that
uv is in general not the same as vu, although they have the same length. If n ≥ 1, then
un denotes the concatenation of n copies of u, and we put u0 = ε. The law of exponents
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umun = um+n then holds for all integers m,n ≥ 0. The point . . . uuu.uuu . . . is denoted by
u∞.

If x ∈ W Z and i ≤ j, then we will denote the block of coordinates in x from position i
to position j by

x[i,j] = xixi+1 . . . xj−1xj. (1.9)

If i > j, define x[i,j] to be ε. It is also convenient to define

x[i,j) = xixi+1 . . . xj−1. (1.10)

The central (2k + 1)-block of x is x[−k,k] = x−kx−k+1 . . . xk−1xk.
If x ∈ W Z and u is a block over W , we will say that u occurs in x (or that x contains

u) if there are indices i and j so that u = x[i,j]. Note that the empty block ε occurs in
every x, since ε = x[1,0].

The index n in a point x = (xn)n∈Z can be thought of as indicating time, so that, for
example, the time-0 coordinate of x is x0. The passage of time corresponds to shifting the
sequence one place to the left, and this gives a map or transformation from W Z to itself.

Definition 1.2.2. The (left) shift map T on W Z is defined by

T : W Z → W Z, (Tx)n = xn+1 for all n ∈ Z. (1.11)

In the sequel, we shall give a metric on W Z. The metric should capture the idea that
points are close when large central blocks of their coordinates agree.

If x = (xn)n∈Z,y = (yn)n∈Z are two sequences in W Z such that x 6= y, then there exists
N ≥ 0 such that xN 6= yN or x−N 6= y−N , so the set {n ≥ 0 | xn 6= yn or x−n 6= y−n} is
nonempty. Then N(x,y) = min{n ≥ 0 | xn 6= yn or x−n 6= y−n} is well-defined. Thus,

N(x,y) = 0 if x0 6= y0, and (1.12)

N(x,y) = 1 + max{k ≥ 0 | x[−k,k] = y[−k,k]} if x0 = y0. (1.13)

Let us define d : W Z ×W Z → [0,+∞) by

d(x,y) =

{
2−N(x,y)+1 if x 6= y

0 if x = y
(1.14)

=


2 if x 6= y and x0 6= y0

2−k if x 6= y, x0 = y0 and k ≥ 0 is maximal with x[−k,k] = y[−k,k]

0 if x = y.

In other words, to measure the distance between x and y, we find the largest k for which the
central (2k+ 1)-blocks of x and y agree, and use 2−k as the distance (with the conventions
that if x = y then k =∞ and 2−∞ = 0, while if x0 6= y0, then k = −1).

For every k ≥ 0 and x ∈ W Z, let B2−k(x) be the open ball with center x and radius
2−k and B2−k(x) be the closed ball with center x and radius 2−k.
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Lemma 1.2.3. (i) Let x,y ∈ W Z be arbitrary. Then

(a) d(x,y) ∈ {0, 2, 1, 2−1, 2−2, . . .} = {0} ∪ {2−k | k ≥ −1}.
(b) d(x,y) = 0 iff x = y.

(c) d(x,y) = 2 iff x 6= y and x0 6= y0.

(d) For all k ≥ −1, d(x,y) ≤ 2−k iff d(x,y) < 2−k+1.

(e) Assume that x 6= y and x0 = y0. Then for all k ≥ 0,

d(x,y) ≤ 2−k iff d(x,y) < 2−k+1 iff x[−k,k] = y[−k,k]. (1.15)

(ii) Let x ∈ W Z be arbitrary. Then

(a) B2(x) = W Z.

(b) For all k ≥ 0,

B2−k+1(x) = B2−k(x) = {y ∈ W Z | y[−k,k] = x[−k,k]}.

Proof. (i) (a) - (d) are obvious. Let us prove (e). Since k ≥ 0, we must have that x 6= y
and x0 = y0. We get that d(x,y) ≤ 2−k iff 2−N(x,y)+1 ≤ 2−k iff −N(x,y) + 1 ≤ −k
iff k ≤ N(x,y)− 1 iff x[−k,k] = y[−k,k], by (1.13)

(ii) Follows from (i).

Proposition 1.2.4. (i) d is a metric on W Z

(ii) Let (x(n)) be a sequence in W Z and x ∈ W Z. Then lim
n→∞

x(n) = x if and only if for

each k ≥ 0, there is nk such that

x
(n)
[−k,k] = x[−k,k]

for all n ≥ nk.

Proof. (i) It remains to verify the triangle inequality. Let x,y, z be pairwise distinct
points of W Z. If d(x,y) = 2 or d(y, z) = 2, then obviously d(x, z) ≤ d(x,y)+d(y, z).
Hence, we can assume that d(x,y) = 2−k and d(y, z) = 2−l with k, l ≥ 0. By (1.15),
we get that x[−k,k] = y[−k,k] and y[−l,l] = z[−l,l]. If we put m := min{k, l} ≥ 0, it
follows that x[−m,m] = z[−m,m], hence

d(x, z) ≤ 2−m ≤ 2−k + 2−l = d(x,y) + d(y, z).

(ii) We have that

lim
n→∞

x(n) = x iff for all k ≥ 0 there exists nk such that d(x(n),x) ≤ 2−k for all n ≥ nk

iff for all k ≥ 0 there exists nk such that x
(n)
[−k,k] = x[−k,k] for all n ≥ nk.
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Thus, a sequence of points in a full shift converges exactly when, for each k ≥ 0, the
central (2k + 1)-blocks stabilize starting at some element of the sequence. For example, if

x(n) = (10n)∞ = . . . 10n10n.10n10n . . . ,

then lim
n→∞

x(n) = . . . 0000.10000 . . ..

Proposition 1.2.5. (i) T is invertible, its inverse being the right shift

T−1 : W Z → W Z, (T−1x)n = xn−1 for all n ∈ Z. (1.16)

(ii) For all x,y ∈ W Z,

d(Tx, Ty) ≤ 2d(x,y) and d(T−1x, T−1y) ≤ 2d(x,y).

Hence, both T and T−1 are Lipschitz continuous.

Proof. (i) It is easy to see.

(ii) The cases d(x,y) = 0 and d(x,y) = 2 are obvious, so we can assume d(x,y) = 2−k

with k ≥ 0, so that x[−k,k] = y[−k,k]. It follows that

(Tx)i = xi+1 = yi+1 = (Ty)i for all i = −(k + 1),−k,−(k − 1), . . . , k − 1, and

(T−1x)i = xi−1 = yi−1 = (T−1y)i for all i = −(k − 1), . . . , k − 1, k, k + 1,

so that (Tx)[−(k−1),k−1] = (Ty)[−(k−1),k−1] and (T−1x)[−(k−1),k−1] = (T−1y)[−(k−1),k−1].
By By (1.15), we get that

d(Tx, Ty), d(T−1x, T−1y) ≤ 2−(k−1) = 2d(x,y).

Theorem 1.2.6. (W Z, T ) is an invertible TDS.

Proof. By Proposition 1.2.5, T is a homeomorphism. Furthermore, W Z is Hausdorff, since
it is a metric space. It remains to prove that W Z is compact. We shall actually show that
W Z is sequentially compact. Given a sequence (x(n))n≥1 in W Z, we construct a convergent
subsequence using Cantor diagonalization as follows.

First consider the 0th coordinates x
(n)
0 for n ≥ 1. Since there are only finitely many

symbols, there is an infinite set S0 ⊆ Z+ for which x
(n)
0 is the same for all n ∈ S0.

Next, the central 3-blocks x
(n)
[−1,1] for n ∈ S0 all belong to the finite set of possible 3-

blocks, so there is an infinite subset S1 ⊆ S0 so that x
(n)
[−1,1] is the same for all n ∈ S1.

Continuing this way, we find for each k ≥ 1 an infinite set Sk ⊆ Sk−1 so that all blocks

x
(n)
[−k,k] are equal for n ∈ Sk.
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Define x ∈ W Z as follows: for any k ≥ 0, take n ∈ Sk arbitrary and define xk = x
(n)
k ,

x−k = x
(n)
−k . By our construction, x

(n)
k , resp. x

(n)
−k , have the same values for all n ∈ Sk, so x

is well-defined. Furthermore, since (Sk)k≥0 is decreasing, we have that x[−k,k] = x
(n)
[−k,k] for

all n ∈ Sk.
Define inductively a strictly increasing sequence of natural numbers (nk)k≥0 by: n0 is

any element in S0, and, for k ≥ 0, nk+1 is the smallest element in Sk+1 strictly greater than
nk.

Then (x(nk))k≥0 is a subsequence of x(n) such that lim
k→∞

x(nk) = x, by Proposition

1.2.4.(ii).

1.2.1 Cylinder sets and product topology

For every n ∈ Z, let
πn : W Z → W, πn(x) = xn (1.17)

be the nth-projection.
An elementary cylinder is a set of the form

Cw
n = π−1

n ({w}) = {x ∈ W Z | xn = w}, where n ∈ Z, w ∈ W.

A cylinder in W Z is a set of the form

Cw1,...,wt
n1,...,nt

= {x ∈ W Z | xni = wi for all i = 1, . . . , t}

=
t⋂
i=1

Cwi
ni

where t ≥ 1, n1, . . . , nt ∈ Z are pairwise distinct and w1, . . . , wt ∈ W . A particular case
of cylinder is the following: if u is a block over X and n ∈ Z, define Cn(u) as the set of
points in which the block u occurs starting at position n. Thus,

Cn(u) = {x ∈ W Z | x[n,n+|u|−1] = u} = C
u1,u2,...,u|u|
n,n+1,...,n+|u|−1 .

Notation 1.2.7. We shall use the notations C for the set of all cylinders and Ce for the
set of elementary cylinders.

The following lemma collects some obvious properties of cylinders.

Lemma 1.2.8. (i) For all n ∈ Z, W Z =
⋃
w∈W Cw

n .

(ii) For all m,n ∈ Z, u,w ∈ W ,

Cw
n ∩ Cu

m =


∅ if m = n and w 6= u,

Cw
n if m = n and w = u,

Cw,u
n,m if m 6= n.

W Z \ Cw
n =

⋃
z∈W, z 6=w

Cz
n, Cw

n \ Cu
m =

⋃
z∈W, z 6=u

Cw
n ∩ Cz

m.
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(iii) For all k ≥ 0 and x ∈ W Z,

B2−k(x) = C−k−1(x[−k−1,k+1]).

(iv) For all n ∈ Z, w ∈ W ,

T (Cw
n ) = Cw

n−1 and T−1(Cw
n ) = Cw

n+1.

(v) For all t ≥ 1, n1 < n2 < . . . < nt ∈ Z, and w1, . . . , wt ∈ W ,

T (Cw1,...,wt
n1,...,nt

) = Cw1,...,wt
n1−1,...,nt−1 and T−1(Cw1,...,wt

n1,...,nt
) = Cw1,...,wt

n1+1,...,nt+1

Let us consider the discrete metric on W :

d(x, y) =

{
0 if x = y,

1 otherwise.

Since W is finite, we have that (W,d) is a compact metric space. Furthermore, a
subbasis for the metric topology is given by

SW := {{w} | w ∈ W}. (1.18)

Let us consider the product topology on W Z.

Proposition 1.2.9. (i) The set Ce of elementary cylinders is a subbasis for the product
topology on W Z.

(ii) The set C of cylinders is a basis for the product topology on W Z.

(iii) Cylinders are clopen sets in the product topology.

Proof. (i) By the fact that SW is a subbasis on W and apply B.7.2.(ii).

(ii) Any cylinder is a finite intersection of elementary cylinders.

(iii) Since Cw
n = π−1

n ({w}) and {w} is closed in W , we have that elementary cylinders are
closed. They are obviously open.

Proposition 1.2.10. The metric d given by (1.14) induces the product topology on W Z.

Proof. By Lemma 1.2.8.(iii), any ball B2−k(x) (k ≥ 0) is a cylinder, hence is open in the
product topology. Let us prove now that every elementary cylinder Cw

n (n ∈ Z, w ∈ W )
is open in the metric topology. Let y ∈ Cw

n and take k ≥ 0 such that k ≥ |n| − 1, so
n ∈ [−k − 1, k + 1]. Then B2−k(y) ⊆ Cw

n , since z ∈ B2−k(y) = C−k−1(y[−k−1,k+1]), implies
that zn = yn = w.
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1.2.2 Shift spaces

Let F be a collection of blocks over W , which we will think of as being the forbidden
blocks. For any such F , define XF to be the set of sequences which do not contain any
block in F .

Definition 1.2.11. A shift space (or simply shift) is a subset X of a full shift W Z such
that X = XF for some collection F of forbidden blocks over W .

Note that the empty space is a shift space, since putting F = W Z rules out every point.
Furthermore, the full shift W Z is a shift space; we can simply take F = ∅, reflecting the
fact that there are no constraints, so that W Z = XF .

The collection F may be finite or infinite. In any case it is at most countable since its
elements can be arranged in a list (just write down its blocks of length 1 first, then those
of length 2, and so on).

Definition 1.2.12. Let X be a subset of the full shift W Z, and let Bn(X) denote the set
of all n-blocks that occur in points of X. The language of X is the collection

B(X) =
⋃
n≥0

Bn(X). (1.19)

For a block u ∈ B(X), we say also that u occurs in X or x appears in X or x is
allowed in X.

Lemma 1.2.13. Let X ⊆ W Z be a nonempty subset of W Z.

(i) X ⊆ XB(X)c.

(ii) If X is a shift space, then X = XB(X)c. Thus, the language of a shift space determines
the shift space.

Proof. (i) Let x ∈ X. If u is a block in B(X)c, then u does not occur in X; in particular,
u does not occur in x.

(ii) We have that X = XF for some collection F of forbidden blocks. Let x ∈ XB(X)c . If
u is a block in F , then u does not occur in X, hence u ∈ B(X)c, so u does not occur
in x.

Proposition 1.2.14. Let X ⊆ W Z be a nonempty subset of W Z. The following are
equivalent

(i) X is a shift space.

(ii) For every x ∈ W Z, if x[i,j] ∈ B(X) for all i ≥ j ∈ Z, then x ∈ X.

(iii) X is a closed strongly T -invariant subset of W Z.

Proof. Exercise.
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1.3 Basic constructions

1.3.1 Homomorphisms, factors, extensions

Definition 1.3.1. Let (X,T ) and (Y, S) be two TDSs. A homomorphism from (X,T )
to (Y, S) is a continuous map ϕ : X → Y such that the following diagram commutes:

X
ϕ - Y

X

T

?
ϕ - Y

S

?

which means ϕ ◦ T = S ◦ ϕ. We use the notation ϕ : (X,T )→ (Y, S).
A homomorphism ϕ : (X,T ) → (Y, S) is an isomorphism if ϕ : X → Y is a homeo-

morphism; in this case the TDSs are called isomorphic.

If ϕ : (X,T ) → (Y, S) is a homomorphism (resp. isomorphism), it is easy to see by
induction on n that ϕ ◦ T n = Sn ◦ ϕ for all n ≥ 1 (resp. for all n ∈ Z).

An automorphism of a TDS (X,T ) is a self-isomorphism ϕ : (X,T ) → (X,T ).
Hence, ϕ : (X,T ) → (X,T ) is an automorphism of (X,T ) if and only if ϕ : X → X is a
homeomorphism that commutes with T .

Definition 1.3.2. Let (X,T ) and (Y, S) be two TDSs. We say that (Y, S) is a factor of
(X,T ) or that (X,T ) is an extension of (Y, S) if there exists a surjective homomorphism
ϕ : (X,T )→ (Y, S).

1.3.2 Invariant and strongly invariant sets

In the following, (X,T ) is a TDS.

Definition 1.3.3. A nonempty subset A ⊆ X is called

(i) invariant under T or T -invariant if T (A) ⊆ A.

(ii) strongly invariant under T or strongly T -invariant if T−1(A) = A.

Trivial strongly T -invariant subsets of X are ∅ and X.

Lemma 1.3.4. Let (X,T ) be a TDS.

(i) Any strongly T -invariant set is also T -invariant.

(ii) The complement of a strongly T -invariant set is strongly T -invariant.

(iii) The closure of a T -invariant set is also T -invariant.
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(iv) The union of any family of (strongly) T -invariant sets is (strongly) T -invariant.

(v) The intersection of any family of (strongly) T -invariant sets is (strongly) T -invariant.

(vi) If A is T -invariant, then T n(A) ⊆ A and T n(A) is T -invariant for all n ≥ 0.

(vii) If A is strongly T -invariant, then T n(A) ⊆ A and T−n(A) = A for all n ≥ 0; in
particular, T−n(A) is strongly T -invariantfor all n ≥ 0.

(viii) For any x ∈ X, the forward orbit O+(x) of x is the smallest T -invariant set contain-
ing x and O+(x) is the smallest T -invariant closed set containing x.

Proof. Exercise.

Lemma 1.3.5. Let (X,T ) be an invertible TDS.

(i) A ⊆ X is strongly T -invariant if and only if T (A) = A if and only if A is strongly
T−1-invariant.

(ii) The closure of a strongly T -invariant set is also strongly T -invariant.

(iii) If A ⊆ X is strongly T -invariant, then T n(A) = A for all n ∈ Z; in particular, T n(A)
is strongly T -invariantfor all n ∈ Z.

(iv) For any x ∈ X, the orbit O(x) of x is the smallest strongly T -invariant set containing
x and O(x) is the smallest strongly T -invariant closed set containing x.

(v) For any nonempty open set U of X,
⋃
n∈Z T

n(U) is a nonempty open strongly T -
invariant set and X \

⋃
n∈Z T

n(U) is a closed strongly T -invariant proper subset of
X.

Proof. Exercise.

1.3.3 Subsystems

Let (X,T ) be a TDS, A ⊆ X be a nonempty closed T -invariant set and

jA : A→ X, jA(x) = x

be the inclusion.

Notation 1.3.6. We shall use the notation TA for the mapping obtained from T by re-
stricting both the domain and the codomain to A.

TA : A→ A, TAx = Tx for all x ∈ A. (1.20)

Obviously, TA is continuous.

Then A is compact Hausdorff and TA : A→ A is continuous, hence (A, TA) is a TDS.
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Definition 1.3.7. A subsystem of the TDS (X,T ) is any TDS of the form (A, TA), where
A is a nonempty closed T -invariant set.

For simplicity, we shall say that A is a subsystem of (X,T ). Obviously, X is a trivial
subsystem of itself. A proper subsystem is one different from (X,T ).

Lemma 1.3.8. Let (X,T ) be a TDS.

(i) For any subsystem A of (X,T ), jA : (A, TA)→ (X,T ) is an injective homomorphism.

(ii) Any subsystem of a subsystem of (X,T ) is also a subsystem of (X,T ).

(iii) For any x ∈ X, O+(x) is a subsystem of (X,T ).

(iv) If (X,T ) is invertible, and A ⊆ X is a nonempty closed strongly T -invariant set,
then the subsystem (A, TA) is invertible.

(v) If (X,T ) is invertible, then O(x) is an invertible subsystem of (X,T ).

Proof. (i), (ii), (iv) are easy to see.
(iii), (v) follow by Lemma 1.3.4.(viii) and Lemma 1.3.5.(iv).

The next proposition shows that every TDS contains a surjective subsystem.

Proposition 1.3.9. Let A be a subsystem of a TDS (X,T ). Then there exists a nonempty
closed set B ⊆ A such that T (B) = B.

Proof. Using the fact that X is compact Hausdorff, A is closed (hence compact) and T n is
continuous, we get that T n(A) is compact (hence closed) in X for all n ≥ 0. Furthermore,
by A.0.5.(i), (T n(A))n≥0 is a decreasing sequence. Applying B.10.5, it follows that

B :=
⋂
n≥0

T n(A)

is nonempty. Furthermore, B ⊆ A and B is closed, as intersection of closed sets.

Claim T (B) = B.

Proof of Claim ” ⊆ ” B is T -invariant as the intersection of a family of T -invariant sets,
by Lemma 1.3.4.(v).

” ⊇ ” Let x ∈ B and set Bn+1 := T−1({x})∩T n(A) for all n ≥ 0. Since {x} is closed in
the compact Hausdorff space X and T is continuous, we get that T−1({x}) is also closed,
hence, Bn+1 is closed. Furthermore, (Bn+1)n≥0 is a decreasing sequence.

Let us prove that Bn+1 is nonempty for all n ≥ 0. Since x ∈ B, we get that x ∈ T n+1(A),
so x = Ty for some y ∈ T n(A). Thus, y ∈ Bn+1.

We can apply again B.10.5 to conclude that

∅ 6=
⋂
n≥0

Bn+1 = T−1({x}) ∩
⋂
n≥0

T n(A) = T−1({x}) ∩B.
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Thus, there exists y ∈ B such that Ty = x, i.e. x ∈ T (B).

Applying the above proposition for A := X, we get the following useful results.

Corollary 1.3.10. If (X,T ) is a TDS, then there exists a nonempty closed set B ⊆ X
such that T (B) = B.

Corollary 1.3.11. In an invertible TDS (X,T ), any nonempty closed T -invariant subset
contains a nonempty closed strongly T -invariant set.

Proof. Apply Proposition 1.3.9 and Proposition 1.3.5.(i).

1.3.4 Products

Let (X1, T1), . . . , (Xn, Tn) be TDSs, where n ≥ 2. The product TDS is defined by:

X :=
n∏
i=1

Xi = X1 × . . .×Xn,

T :=
n∏
i=1

Ti = T1 × . . .× Tn : X → X, that is T (x1, . . . , xn) = (T1x1, . . . , Tnxn).

For any i = 1, . . . , n, let us consider the natural projections

πi :
n∏
i=1

Xi → Xi, πi(x1, . . . , xn) = xi.

Proposition 1.3.12. (i) (X,T ) is a TDS.

(ii) (Xi, Ti) is a factor of (X,T ) for all i = 1, . . . , n.

(iii) (X,T ) is invertible whenever (Xi, Ti) (i = 1, . . . , n) are invertible TDSs.

Proof. (i) X is compact Hausdorff as a product of compact Hausdorff spaces. Further-
more, T is continuos as a product of continuous functions, by B.7.4.

(ii) It is easy to see that πi : (X,T ) → (Xi, Ti) is a surjective homomorphism: πi is
surjective, continuous, and for all x = (x1, . . . , xn) ∈ X, we have that

(πi ◦ T )(x) = πi(Tx) = Tixi and (Ti ◦ πi)(x) = Tixi.

(iii) T is a homeomorphism as a product of homeomorphisms, by B.7.4.

Example 1.3.13. The TDS (Tn, Ra) (see Example 1.1.5) is the n-fold product of the TDSs
(S1, Rai), i = 1, . . . , n (see Example 1.1.4).
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1.3.5 Disjoint unions

Let (X1, T1) and (X2, T2) be TDSs and consider the disjoint union X := X1 t X2 of the
topological spaces X1, X2.

Let us define

T : X → X, Tx =

{
T1x if x ∈ X1,

T2x if x ∈ X2.

Proposition 1.3.14. (X,T ) is a TDS, called the disjoint union of the TDSs (X1, T1)
and (X2, T2).

Proof. Apply B.6.2 and B.10.6.(v).

Lemma 1.3.15. Let (X,T ) be a disjoint union of (X1, T1) and (X2, T2).

(i) Both (X1, T1) and (X2, T2) are subsystems of (X,T ).

(ii) If (X1, T1) and (X2, T2) are both invertible, then (X,T ) is invertible too.

Proof. (i) X1 is nonempty closed and T -invariant, since T (X1) = T1(X1) ⊆ X1. Fur-
thermore, T1 = TX1 . Similarly for X2.

(ii) The inverse T−1 : X → X of T is given by

T−1x =

{
T−1

1 x if x ∈ X1,

T−1
2 x if x ∈ X2.

and is continuous, by B.6.2.(ii).

1.4 Transitivity

Definition 1.4.1. Let (X,T ) be a TDS. A point x ∈ X is called forward transitive if
its forward orbit O+(x) is dense in X. If there is at least one forward transitive point, the
TDS is called (topologically) forward transitive.

The property of a TDS being forward transitive expresses the fact that if we start at
the point x we can reach, at least approximately, any other point in X after some time.

Definition 1.4.2. Let (X,T ) be an invertible TDS. A point x ∈ X is called transitive if
its orbit O(x) is dense in X. The TDS is called (topologically) transitive if there is at
least one transitive point.

The following is obvious.
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Lemma 1.4.3. Let (X,T ) be a TDS.

(i) For every x ∈ X, (O+(x), TO+(x)) is a forward transitive subsystem of (X,T ).

(ii) If (X,T ) is invertible, then (O(x), TO(x)) is a transitive subsystem of (X,T ) for all
x ∈ X.

Lemma 1.4.4. Let (X,T ) be a TDS and x ∈ X.

(i) x is a forward transitive point if and only if x ∈
⋃
n≥0 T

−n(U) for every nonempty
open subset U of X.

(ii) Assume that (X,T ) is invertible. Then x is a transitive point if and only if x ∈⋃
n∈Z T

n(U) for every nonempty open subset U of X.

Proof. Exercise.

Lemma 1.4.5. Let (X,T ) be a TDS with X metrizable and (Un)n≥1 be a countable basis
of X (which exists, by B.10.11).

(i) x is a forward transitive point if and only if x ∈
⋂
n≥1

⋃
k≥0

T−k(Un).

(ii) Assume that (X,T ) is invertible. Then x is a transitive point if and only if x ∈⋂
n≥1

⋃
k∈Z

T k(Un).

Proof. Exercise.

Theorem 1.4.6. Let (X,T ) be an invertible TDS and assume that X is metrizable. The
following are equivalent:

(i) (X,T ) is transitive.

(ii) If U is a nonempty open subset of X such that T (U) = U , then U is dense in X.

(iii) If E 6= X is a proper closed subset of X such that T (E) = E, then E is nowhere
dense in X.

(iv) For any nonempty open subset U of X,
⋃
n∈Z T

n(U) is dense in X.

(v) For any nonempty open subsets U, V of X, there exists n ∈ Z such that T n(U)∩V 6= ∅.

(vi) The set of transitive points is residual.
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Proof. (i)⇒ (ii) Let x be a transitive point, so that O(x) is dense. Let U be a nonempty
open set satisfying T (U) = U . Since O(x)∩U 6= ∅, we have that T kx ∈ U for some k ∈ Z.
It follows that for all n ∈ Z, T nx = T n−k(T kx) ∈ T n−k(U) = U , by A.0.6.(i). Hence,
O(x) ⊆ U and, since O(x) = X, we must have U = X.
(ii)⇔ (iii) Exercise.
(iv)⇔ (v) follows immediately from B.1.5.(ii).
(ii)⇒ (iv) Apply Lemma 1.3.5.(v).
(iv)⇒ (vi) Let (Un)n≥1 be a countable basis of X. By Lemma 1.4.5.(ii), the set of transitive

points is
⋂
n≥1

⋃
k∈Z

T k(Un), which is an intersection of countably many open dense sets, by

(iv). Hence, the set of transitive points is residual, by B.11.3.(ii).
(vi)⇒ (i) Since X is compact Hausdorff, we get that X is a Baire space, by Baire Category
Theorem B.11.7. Apply now B.11.6 to conclude that there exist transitive points.

1.4.1 Examples

Example 1.4.7. Let (G,La) (a ∈ G) be the left translation on a compact group (see
Example 1.1.3 in the lecture). If (G,La) is (forward) transitive, then actually all points
are (forward) transitive.

Proof. Exercise.

Example 1.4.8. Let (S1, Ra) be the rotation on the circle group (See Example 1.1.4 in
the lecture). Then (S1, Ra) is transitive if and only if a is not a root of unity.

Proof. Exercise.

1.5 Minimality

Definition 1.5.1. A TDS (X,T ) is called minimal if there are no non-trivial closed
T -invariant sets in X.

This means that if A ⊆ X is closed and T (A) ⊆ A, then A = ∅ or A = X. Equivalently,
(X,T ) is minimal if and only if it does not have proper subsystems. Hence, ”irreducible”
appears to be the adequate term. However, the term ”minimal” is generally used in
topological dynamics.

Proposition 1.5.2. (i) (X, 1X) is minimal if and only if |X| = 1.

(ii) If (X,T ) is minimal, then T is surjective.

(iii) A factor of a minimal TDS is also minimal.

(iv) If a product TDS is minimal, then so are each of its components.
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(v) If (X1, TX1), (X2, TX2) are two minimal subsystems of a TDS (X,T ), then either
X1 ∩X2 = ∅ or X1 = X2.

Proof. Exercise.

As a consequence of the above proposition, minimality is an isomorphism invariant, i.e.
if two TDSs are isomorphic and one of them is minimal, so is the other.

Proposition 1.5.3. Let (X,T ) be a TDS. The following are equivalent:

(i) (X,T ) is minimal.

(ii) Every x ∈ X is forward transitive.

(iii) X =
⋃
n≥0 T

−n(U) for every nonempty open subset U of X.

(iv) For every nonempty open subset U of X, there are n1, . . . , nk ≥ 0 such that X =
k⋃
i=1

T−ni(U).

Proof. (i)⇒ (ii) By Lemma 1.3.8.(iii), O+(x) is a subsystem of X. Hence, we must have
O+(x) = X.
(ii)⇒ (i) Assume that A 6= ∅ is a closed T -invariant set and let x ∈ A be arbitrary. Then
X = O+(x) ⊆ A, by Proposition 1.3.4.(viii). Hence, X = A.
(ii)⇔ (iii) By Lemma 1.4.4.(i), x is forward transitive if and only if x ∈

⋃
n≥0 T

−n(U) for
every nonempty open subset U of X.
(iv)⇒ (iii) Obviously.
(iii)⇒ (iv) By the compactness of X, since T−n(U) is open for all n ≥ 0.

Corollary 1.5.4. Every minimal TDS is forward transitive.

Theorem 1.5.5. Any TDS (X,T ) has a minimal subsystem.

Proof. Let M be the family of all nonempty closed T -invariant subsets of X with the
partial ordering by inclusion. Then, of course, X ∈M, soM is non-empty. Let (Ai)i∈I be
a chain inM and take A :=

⋂
i∈I Ai. Then A ∈M, since A is nonempty (by B.10.4), A is

closed, and A is T -invariant (by Proposition 1.3.4.(v)). Thus, by Zorn’s Lemma A.0.4 there
exists a minimal element F ∈M. Then (F, TF ) is a minimal subsystem of (X,T ).

1.6 Topological recurrence

We now turn to the question whether a state returns (at least approximately) to itself from
time to time.

Let A ⊆ X be arbitrary and consider the successive sites x, Tx, T 2x, . . . , T nx, . . . of an
arbitrary point x ∈ A as time runs through 0, 1, 2, . . . , n, . . .. The set of all points which
return (= are back) to A at time n ≥ 1 is

{x ∈ A | T nx ∈ A} = A ∩ T−n(A).
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Notation 1.6.1. We shall use the following notations:

(i) Aret is the set of those points of A which return to A at least once.

(ii) Ainf is the set of those points of A which return to A infinitely often.

(iii) For every x ∈ A, rt(x,A) is the set of return times of x in A.

Thus,

Aret = A ∩
⋃
n≥1

T−n(A), Ainf = A ∩
⋂
n≥1

⋃
m≥n

T−m(A),

rt(x,A) = {n ≥ 1 | T nx ∈ A} = {n ≥ 1 | x ∈ T−n(A)}.

Furthermore, for every x ∈ A we have that x ∈ Aret if and only if rt(x,A) is nonempty,
and x ∈ Ainf if and only if rt(x,A) is infinite.

Definition 1.6.2. Let (X,T ) be a TDS. A point x ∈ X is called

(i) recurrent if x ∈ Uret for every open neighborhood U of x.

(ii) infinitely recurrent if x ∈ Uinf for every open neighborhood U of x.

Thus, x is recurrent if and only if x returns at least once to U for every open neighbor-
hood U if and only if x ∈ O>0(x).

Proposition 1.6.3. Let (X,T ) be a TDS and x ∈ X. The following are equivalent:

(i) x is recurrent.

(ii) x is infinitely recurrent.

Proof. Exercise.

Definition 1.6.4. A set S ⊆ Z+ is called syndetic if there exists an integer N ≥ 1 such
that [k, k +N ]

⋂
S 6= ∅ for any k ∈ Z+.

Thus syndetic sets have ”bounded gaps”. Any syndetic set is obviously infinite.

Definition 1.6.5. Let (X,T ) be a TDS. A point x ∈ X is called almost periodic or
uniformly recurrent if for every open neighborhood U of x the set of return times rt(x, U)
is syndetic.

Lemma 1.6.6. (i) Any periodic point is almost periodic.

(ii) Any almost periodic point is recurrent.

Proof. (i) Let x be a periodic point. Let N ≥ 1 be the smallest positive integer such
that TNx = x. Then for every k ≥ 1, there exists n ∈ [k, k +N ] such that T nx = x,
in particular n ∈ rt(x, U) for every open neighborhood U of x.
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(ii) Obviously.

Lemma 1.6.7. (i) If ϕ : (X,T ) → (Y, S) is a homomorphism of TDSs and x ∈ X
is recurrent (almost periodic) in (X,T ), then ϕ(x) is recurrent (almost periodic) in
(Y, S).

(ii) If (A, TA) is a subsystem of (X,T ) and x ∈ A, then x is recurrent (almost periodic)
in (X,T ) if and only if x is recurrent (almost periodic) in (A, TA).

Proof. Exercise.

As a consequence, isomorphisms map recurrent (almost periodic) points in recurrent
(almost periodic) points.

Lemma 1.6.8. Let (X,T ) be a TDS and assume that X is metrizable. For any x ∈ X,
the following are equivalent:

(i) x is recurrent.

(ii) lim
k→∞

T nkx = x for some sequence (nk) in Z+.

(iii) lim
k→∞

T nkx = x for some sequence (nk) in Z+ such that lim
k→∞

nk =∞.

Proof. Exercise.

Proposition 1.6.9. [G. D. Birkhoff]
Every point in a minimal TDS (X,T ) is almost periodic.

Proof. Assume that (X,T ) is minimal. Let x ∈ X be arbitrary and U be a an open
neighborhood of x. Applying Proposition 1.5.3.(iv), there are n1, . . . , np ≥ 0 such that X =⋃p
i=1 T

−ni(U). Let N := max{n1, . . . , np}. For each k ≥ 1, there exists i = 1, . . . , p such
that T kx ∈ T−ni(U), that is T k+nix ∈ U . It follows that k+ ni ∈ [k, k+N ]∩ rt(x, U).

As a consequence, we get

Theorem 1.6.10 (Birkhoff Recurrence Theorem).
Every TDS (X,T ) contains at least one point x which is almost periodic (and hence recur-
rent).

Proof. By Theorem 1.5.5, (X,T ) has a minimal subsystem (A, TA). Apply Proposition
1.6.9 to get that all points x ∈ A are almost periodic in (A, TA). One gets, by Lemma
1.6.7.(ii), that they are almost periodic in (X,T ) too.

Corollary 1.6.11. Let (X,T ) be a TDS and assume that X is metrizable. Then there exists
x ∈ X satisfying lim

k→∞
T nkx = x for some sequence (nk) in Z+ such that lim

k→∞
nk =∞.

Proof. Apply Theorem 1.6.10 and Lemma 1.6.8.
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1.6.1 Examples

Example 1.6.12. Consider the full shift W Z. The following are equivalent:

(i) x ∈ W Z is recurrent.

(ii) Every nonempty block of x occurs a second time.

(iii) Every nonempty block of x occurs infinitely often.

Proof. (i) ⇒ (ii) Assume that x is recurrent, and let u := x[i,j] be a nonempty block of
x. Take k := max{|i|, |j|}, so that x[i,j] is a subblock of x[−k,k]. Apply the fact that x is
recurrent to get n ≥ 1 such that T nx ∈ B2−k+1(x), that is x[−k,k] = x[n−k,n+k]. It follows
that x[i,j] = x[n+i,n+j] and n+ i > i.
(ii) ⇒ (i) It is enough to prove that for all k ≥ 0 there exists n ≥ 1 such that T nx ∈
B2−k+1(x), i.e. x[−k,k] = x[n−k,n+k]. Apply (ii) for the central block x[−k,k].
(iii)⇒ (ii) Obviously.
(ii)⇒ (iii) Apply (ii) repeatedly.

1.6.2 An application to a result of Hilbert

The following result, due to Hilbert [54], is presumably the first result of Ramsey theory.
Hilbert used this lemma to prove his irreducibility theorem: If the polynomial P (X, Y ) ∈
Z[X, Y ] is irreducible, then there exists some a ∈ N with P (a, Y ) ∈ Z[Y ].

The finite sums of a set D of natural numbers are all those numbers that can be
obtained by adding up the elements of some finite nonempty subset of D. The set of all
finite sums over D will be denoted by FS(D). Thus,

FS(D) =

{∑
m∈F

m | F is a finite nonempty subset of D

}
. (1.21)

If D = {n1, n2, . . . , nl}, we shall denote FS(D) by FS
(
n1, . . . , nl

)
.

Theorem 1.6.13 (Hilbert (1892). Let r ∈ Z+ and N =
r⋃
i=1

Ci. Then for any l ≥ 1 there

exist n1 ≤ n2 ≤ . . . ≤ nl ∈ N such that infinitely many translates of FS
(
n1, . . . , nl

)
belong

to the same Ci. That is, ⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
⊆ Ci

for some finite sequence n1 ≤ n2 ≤ . . . ≤ nl in N and some infinite set B ⊆ N.

Proof. Let W = {1, 2, . . . , r} and consider the full shift (W Z, T ). Let x ∈ WZ be defined
by:

xn =

{
i if n ≥ 0 and n ∈ Ci
arbitrarily if n < 0.
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Step 1 Assume that x is recurrent.
We construct a finite sequence (Wk), k = 0, 1, . . . , l of blocks of x inductively as follows:

(i) Let N := x0 and define W0 := N .

(ii) Assume that W0, . . . ,Wk were defined. Since x is recurrent, the block Wk occurs in
x a second time, by Example 1.6.12. Hence, there exists a (possibly empty) block
Yk+1 such that WkYk+1Wk occurs in x. Define Wk+1 := WkYk+1Wk.

For every k = 1, . . . , l, let nk be the length of WkYk+1, so that 1 ≤ n1 ≤ . . . ≤ nl. Let us
remark that

Wk = x[0,|Wk|−1], |Wk+1| = |Wk|+ nk,

and that if some symbol occurs at position p in Wk, then it occurs also at position p+ nk
in Wk+1.

Claim: N occurs in x at any position in FS
(
n1, . . . , nl

)
.

Proof: Let 1 ≤ i1 < i2 < . . . < ip ≤ l, where 1 ≤ p ≤ l. Then N occurs at position 0
in x, at position ni1 in Wi1 , at position ni1 + ni2 in Wi2 , and so on. Applying the above
argument repeatedly, we get that N occurs at position ni1 + ni2 + . . . + nip in Wip , hence
in x. It follows that N occurs in x at any position in FS

(
n1, . . . , nl

)
.

Applying again the fact that x is recurrent, we get that the block Wl occurs in x at an
infinite number of positions, say 0 = p1 < p2 < . . . < pk < . . .. Take B = {pk | k ≥ 1} to

get that N occurs at any position in
⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
. That is,

⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
⊆ CN .

Step 2 Let us consider the general case, when x is not necessarily recurrent. Consider
the subsystem (O+(x), TO+(x)), and apply Birkhoff Recurrence Theorem 1.6.10 to get a
recurrent point y of this TDS. We have two cases:

Case 1: y = Tmx for some m ≥ 0. Applying Step 1 for y, we get that N := y0 = xm
occurs in y at any position in

⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
. Letting C := m+B, we get that

C is infinite and ⋃
a∈C

(
a+ FS

(
n1, . . . , nl

))
⊆ CN

Case 2: y ∈/O+(x). Then lim
k→∞

Tmkx = y for some strictly increasing sequence (mk)

of natural numbers. Applying Step 1 for the recurrent point y, we get that N := y0 occurs
at any position p ∈ FS

(
n1, . . . , nl

)
for some finite sequence n1 ≤ n2 ≤ . . . ≤ nl in N.



1.6. TOPOLOGICAL RECURRENCE 27

Take n := n1 +n2 + . . .+nl. It follows that there exists K ≥ 0 such that (Tmkx)[−n,n] =
y[−n,n] for all k ≥ K. Let B = {mk | k ≥ K}. Then B is infinite and

xmk+p = (Tmkx)p = yp = N for all p ∈ FS
(
n1, . . . , nl

)
and all mk ∈ B.

Thus ⋃
a∈B

(
a+ FS

(
n1, . . . , nl

))
⊆ CN .
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1.7 Multiple recurrence

Let X be a compact metric space, l ≥ 1, and T1, . . . , Tl : X → X be continuous mappings.

Definition 1.7.1. We say that a point x ∈ X is multiply recurrent (for T1, . . . , Tl) if
there exists a sequence (nk) in N with lim

k→∞
nk =∞ such that

lim
k→∞

T nk1 x = lim
k→∞

T nk2 x = . . . = lim
k→∞

T nkl x = x. (1.22)

Furthermore, the mappings T1, . . . , Tl : X → X are said to be commuting if Ti ◦ Tj =
Tj ◦ Ti for all i, j = 1, . . . , l. This implies T ni ◦ Tmj = Tmj ◦ T ni for all m,n ∈ Z+; if the Ti’s
are homeomorphisms, then T ni ◦ Tmj = Tmj ◦ T ni holds for all m,n ∈ Z.

In this section, we extend Birkhoff’s Recurrence Theorem. We shall prove the following
result.

Theorem 1.7.2 (Multiple Recurrence Theorem (MRT)).
Let l ≥ 1 and T1, . . . , Tl : X → X be commuting homeomorphisms of a compact metric
space (X, d). Then there exists a multiply recurrent point for T1, . . . , Tl.

Corollary 1.7.3.
Let (X, d) be a compact metric space and T : X → X be a homeomorphism. For all l ≥ 1,
there exists a multiply recurrent point for T, T 2, . . . , T l.

Proof. Let Ti := T i for all 1 ≤ i ≤ l. Then T1, . . . , Tl are commuting homeomorphisms
of the compact metric space (X, d), so we can apply MRT to conclude that there exists a
multiply recurrent point x ∈ X.

Corollary 1.7.4.
Let (X, d) be a compact metric space and T : X → X be a continuous mapping. For all
l ≥ 1, there exists a multiply recurrent point for T, T 2, . . . , T l.

Proof. Exercise.

1.7.1 Some useful lemmas

In the sequel, (X, d) is a compact metric space, l ≥ 1, and T1, . . . , Tl : X → X are
continuous mappings.

Consider the product TDS (X l, T̃ ):

X l = X ×X × . . .×X︸ ︷︷ ︸
l

, T̃ :=
l∏

i=1

Ti.

Then the metric dl(x,y) = max
i=1,...,l

d(xi, yi) induces the product topology on X l, by B.7.5.
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For every ∅ 6= Y ⊆ X, let

Y l
∆ := {y = (y, y, . . . , y) | y ∈ Y }

be the diagonal of Y . For every i = 1, . . . , l, let

T̃i : X l → X l, T̃i = Ti × . . .× Ti︸ ︷︷ ︸
l

.

Lemma 1.7.5. (i) dl(x,y) = d(x, y) for all x,y ∈ X l
∆.

(ii) For all x ∈ X, (Bε(x))l∆ = {y ∈ X l
∆ | dl(x,y) < ε} = Bε(x) ∩X l

∆.

(iii) V is open in X l
∆ if and only if V = U l

∆ for some open subset U of X.

(iv) Let Y ⊆ X be a nonempty closed set. Then

(a) Y l
∆ is a compact metric space.

(b) For all i = 1, . . . , l, T̃i(Y
l

∆) = (Ti(Y ))l∆.

We have the following characterization of multiply recurrent points.

Lemma 1.7.6. Let x ∈ X and x = (x, . . . , x) ∈ X l
∆. The following are equivalent:

(i) x is multiply recurrent for T1, . . . , Tl.

(ii) x is a recurrent point in (X l, T̃ ).

(iii) For all ε > 0 there exists N ≥ 1 such that dl(x, T̃
Nx) < ε.

(iv) For all ε > 0 there exists N ≥ 1 such that d(x, TNi x) < ε for all i = 1, . . . , l.

Proof. Exercise.

Lemma 1.7.7. Assume that T1, . . . , Tl : X → X are commuting homeomorphisms. Then

(i) X contains a subset X0 which is minimal with the property that it is nonempty closed
and strongly Ti-invariant for all i = 1, . . . , l.

(ii) For every nonempty open subset U of X0, there are M ≥ 1 and nij ∈ Z, i =

1, . . . , l, j = 1, . . . ,M such that X0 =
M⋃
j=1

(
T
n1j

1 ◦ . . . ◦ T nljl

)
(U).

(iii) (X0)l∆ is strongly T̃i-invariant for all i = 1, . . . , l.

Proof. Exercise.

The following lemma is one of the most important steps in proving Theorem 1.7.2.
According to Furstenberg, its proof is due to Rufus Bowen.
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Lemma 1.7.8. Let (X,T ) be a TDS with (X, d) metric space. Let A ⊆ X be a subset with
the property that

for every ε > 0 and for all x ∈ A there exist y ∈ A and n ≥ 1 with d(T ny, x) < ε. (1.23)

Then for every ε > 0 there exist a point z ∈ A and N ≥ 1 satisfying d(TNz, z) < ε.

Proof. Let ε > 0 be given. We define inductively sequences ε1 > ε2 > . . . of positive
parameters, z0, z1, . . . , of points in A, and p1, p2, . . . , pn, . . . of positive integers satisfying
the following for all k ≥ 1:

(i) εk <
ε

2k+1 ,

(ii) d(zk, T
pk+1zk+1) < εk+1, and

(iii) for all u, v ∈ X, d(u, v) < εk+1 implies

d(T pku, T pkv) < εk, d(T pk−1+pku, T pk−1+pkv) < εk, . . . , d(T p1+...+pku, T p1+...+pkv) < εk.

Let z0 ∈ A be arbitrarily. Let ε1 < ε/4 and apply (1.23) to get z1 ∈ A and p1 ≥ 1 such
that

d(T p1z1, z0) < ε1.

Since T p1 : X → X is uniformly continuous, there exists δ > 0 such that for all u, v ∈ X,

d(u, v) < δ implies d(T p1u, T p1v) < ε1.

Let ε2 < min{δ, ε1/2} and apply again (1.23) to get z2 ∈ A and p2 ≥ 1 such that

d(z1, T
p2z2) < ε2.

Since T p2 , T p1+p2 : X → X are uniformly continuous, there exists δ > 0 such that for all
u, v ∈ X,

d(u, v) < δ implies d(T p1u, T p1v) < ε2, d(T p1+p2u, T p1+p2v) < ε2.

Let ε3 < min{δ, ε2/2} and apply again (1.23) to get z3 ∈ A and p3 ≥ 1 such that

d(z2, T
p3z3) < ε3.

Assume ε1, . . . , εk, z0, z1, . . . , zk, and p1, . . . , pk were defined. Since T pk ,T pk−1+pk , T p1+...+pk :
X → X are uniformly continuous, there exist δ1, . . . , δk > 0 such that for all u, v ∈ X,

d(u, v) < δk implies d(T pku, T pkv) < εk, and for all i = 1, . . . , k − 1,

d(u, v) < δi implies d(T pi+...+pku, T pi+...+pkv) < εk.
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Let εk+1 < min{δ1, . . . , δk, εk/2} and apply again (1.23) to get zk+1 ∈ A and pk+1 ≥ 1 such
that

d(zk, T
pk+1zk+1) < εk+1.

By sequential compactness, the sequence (zn) has a convergent subsequence. In particular,
there exist 1 ≤ i < j such that d(zi, zj) < ε/2. It follows that

d(zi, T
pi+1zi+1) < εi+1, by (ii) for k = i

d(T pi+1zi+1, T
pi+1+pi+2zi+2) < εi+1, by (ii), (iii) for k = i+ 1,

d(T pi+1+pi+2zi+2, T
pi+1+pi+2+pi+3zi+3) < εi+2, by (ii), (iii) for k = i+ 2,

d(T pi+1+pi+2+...pj−1zj−1, T
pi+1+pi+2+...pjzj) < εj−1, by (ii), (iii) for k = j − 1.

Hence,

d(zi, T
pi+1+pi+2+...+pjzj, ) ≤ εi+1 + εi+1 + . . .+ εj−1 <

ε

2i+2
+

ε

2i+2
+

ε

2i+3
+ . . .

ε

2j

< ε/8 + ε/8
∞∑
k=0

1/2k = ε/8 + ε/4 < ε/2.

By the triangle inequality we then have

d(zj, T
pi+1+pi+2+...+pjzj) ≤ d(zj, zi) + d(zi, T

pi+1+pi+2+...pjzj) < ε/2 + ε/2 = ε.

The conclusion of the lemma follows on taking x := zj and N := pi+1 + pi+2 + . . . pj.

1.7.2 Proof of the Multiple Recurrence Theorem

In the sequel, we give a proof of Theorem 1.7.2.
Let us denote with MRT (l) the statement of the theorem. We prove it by induction on
l ≥ 1.

MRT (1) follows from Birkhoff Recurrence Theorem (see Corollary 1.6.11).

MRT (l − 1)⇒MRT (l) Let l ≥ 2 and T1, . . . , Tl : X → X be l commuting homeomor-
phisms of X. By Lemma 1.7.7.(i), we can assume that X does not contain a proper
nonempty closed subset Y such that Ti(Y ) = Y for all i = 1, . . . , l.

Claim 1: For all ε > 0 there exist x,y ∈ X l
∆ and N ≥ 1 such that dl(x, T̃

Ny) < ε.

Proof: For every i = 1, . . . , l − 1, let Si := Ti ◦ T−1
l . Then S1, . . . , Sl−1 are commuting

homeomorphisms, so we can apply MRT (l − 1) to get the existence of x ∈ X such that,
for all ε > 0, there exists N ≥ 1 satisfying d(x, SNi x) < ε for all i = 1, . . . , l− 1. By letting
y := T−Nl x, and x,y ∈ X l

∆,x = (x, x, . . . , x),y = (y, y, . . . , y), we get that

dl(x, T̃
Ny) = max{d(x, SN1 x), . . . , d(x, SNl−1x), d(x, x)} < ε.
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Claim 2: For all ε > 0 and for all x ∈ X l
∆ there exist y ∈ X l

∆ and N ≥ 1 such that
dl(x, T̃

Ny) < ε.

Proof: Let U := Bε/2(x) ⊆ X. Applying Lemma 1.7.7.(ii), we get the existence of M ≥ 1

and nij ∈ Z, i = 1, . . . , l, j = 1, . . . ,M such that X =
M⋃
j=1

(
T
n1j

1 ◦ . . . ◦ T nljl

)
(U). As an

immediate consequence,

X l
∆ =

(
M⋃
j=1

(
T
n1j

1 ◦ . . . ◦ T nljl

)
(U)

)l

∆

=
M⋃
j=1

(
T̃1

n1j ◦ . . . ◦ T̃l
nlj)

(U l
∆). (1.24)

Let us denote, for all j = 1, . . . ,M ,

Sj :=
(
T̃1

n1j ◦ . . . ◦ T̃l
nlj
)−1

= T̃1
−n1j ◦ . . . ◦ T̃l

−nlj
, since T̃i’s commute. (1.25)

X l
∆ is compact and strongly Sj-invariant, by Lemma 1.7.7.(iii), so Sj : X l

∆ → X l
∆ is

uniformly continuous. We get then for all j = 1, . . . ,M the existence of δj > 0 such that
for all z,u ∈ X l

∆,
dl(z,u) < δj implies dl(Sjz, Sju) < ε/2. (1.26)

Take δ := min{δ1, . . . , δj} > 0 and apply Claim 1 to get z0,u0 ∈ X l
∆ and N ≥ 1 such that

dl(u0, T̃
Nz0) < δ. (1.27)

Since u0 ∈ X l
∆, by (1.24) there exists j0 = 1, . . . ,M such that Sj0u0 ∈ U l

∆, hence

dl(x, Sj0u0) < ε/2. (1.28)

Let y := Sj0z0. Applying (1.26), (1.27), and the fact that T̃N and Sj0 commute, we get
that

dl(T̃
Ny, Sj0u0) = dl(Sj0(T̃

Nz0), Sj0u0) < ε/2. (1.29)

Finally, it follows that

dl(T̃
Ny,x) ≤ dl(T̃

Ny, Sj0u0) + dl(Sj0u0,x)

< ε/2 + ε/2 = ε.

Claim 3: For all ε > 0 there exist x ∈ X l
∆ and N ≥ 1 such that dl(x, T̃

Nx) < ε.

Proof: follows from Claim 2, after applying Lemma 1.7.8 with A = X l
∆.

Claim 4: For all ε > 0 the set

Yε = {x ∈ X l
∆ | there exists N ≥ 1 such that dl(x, T̃

Nx) < ε} (1.30)

is dense in X l
∆.
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Proof: Let ε > 0. We shall prove that Yε ∩U l
∆ 6= ∅ for any open subset U of X. As in the

proof of Claim 2, we get

M ≥ 1, nij ∈ Z, i = 1, . . . , l, j = 1, . . . ,M, Sj = T̃1
−n1j ◦ . . . ◦ T̃l

−nlj

satisfying

(i) X l
∆ =

M⋃
j=1

S−1
j (U l

∆), and

(ii) there exists δ > 0 such that for all j = 1, . . . ,M , and for all z,u ∈ X l
∆,

dl(z,u) < δ implies dl(Sjz, Sju) < ε.

By Claim 3, Yδ is nonempty. Let x ∈ Yδ and N ≥ 1 be such that dl(x, T̃
Nx) < δ. Since

x ∈ X l
∆, there exists j0 = 1, . . . ,M such that y := Sj0x ∈ U l

∆. Since T̃N and Sj0 commute,
it follows that

dl(y, T̃
Ny) = dl(Sj0x, Sj0(T̃

Nx)) < ε,

hence y ∈ U l
∆ ∩ Yε.

Claim 5: MRT (l) is true, that is there exists x ∈ X l
∆ such that, for all ε > 0, there exists

N ≥ 1 such that
dl(T̃

Nx,x) < ε.

Proof: For every n ≥ 1, by Claim 5, Y1/n is dense in X l
∆. Furthermore, Y1/n = U l

∆, where

U =
⋃
N≥1

l⋂
i=1

{x ∈ X | d(x, TNi x) < 1/n}.

It is easy to see that U is open in X, hence Y1/n is is open in X l
∆. Thus, Y :=

⋂
n≥1

Y1/n is

a residual set and we can apply B.11.6 to conclude that Y is nonempty. Then any x ∈ Y
satisfies the claim.
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Chapter 2

Ramsey Theory

Ramsey theory is that branch of combinatorics which deals with structure which is pre-
served under partitions. The theme of Ramsey theory:

”Complete disorder is impossible.” (T.S. Motzkin)

Thus, inside any large structure, no matter how chaotic, will lie a smaller substructure
with great regularity. One looks typically at the following kind of question: If a particular
structure (e.g. algebraic, combinatorial or geometric) is arbitrarily partitioned into finitely
many classes, what kind of substructure must always remain intact in at least one class?

Ramsey theorems are natural, and they can be very powerful, as they assume very
little information; they are usually very easy to state, but can have very complicated
combinatorial proofs.

Ramsey theory owes its name to a very general theorem of Ramsey from 1930 [95],
popularized by Erdös in the 30’s.

A number of results in Ramsey theory have the following general form:

(*) Let X be a set. For any r ∈ Z+, and any r-partition X =
r⋃
i=1

Ci of X, at least

one of the classes possesses some property P .

X could be N,Z,Nd,Zd (d ≥ 1), . . .. The statement can be expressed also in terms of finite
colourings of X. For any r ≥ 1, an r-colouring of X is a mapping c : X → {1, 2, . . . , r}.
Then (*) becomes:

For any finite colouring of a set X, there exists a monochromatic subset of X having
some property P .

An affine image of a set F ⊆ N (resp. F ⊆ Z) is a set of the form

a+ bF = {a+ bf | f ∈ F} where a ∈ N, b ∈ Z+( resp. a ∈ Z, b ∈ Z \ {0}). (2.1)

35
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2.1 Ramsey Theorem

For every set X and every k ≥ 1, let

[X]k := {Y ⊆ X | |Y | = k}. (2.2)

Given an r-coloring c of [X]k, a set H ⊆ X is called monochromatic under c if c is
constant on [H]k.

Theorem 2.1.1 (Ramsey Theorem). [95] For all k, r ≥ 1 and every r-coloring of [N]k

there exists an infinite set H ⊆ N such that H is monochromatic under c.

Proof. The textbook proof can be found in [47]. We refer to [29, 10.2] P. Erdös, A.
Hajnal.

2.2 van der Waerden theorem

One of the most fundamental results of Ramsey theory is the celebrated van der Waerden
theorem.

Theorem 2.2.1 (van der Waerden).

Let r ≥ 1 and N =
r⋃
i=1

Ci. For any k ≥ 1, there exists i ∈ [1, r] such that Ci contains an

arithmetic progression of length k.

This result was conjectured by Baudet and proved by van der Waerden in 1927 [117].
The theorem gained a wider audience when it was included in Khintchine’s famous book
Three pearls in number theory [62].

Let us denote with (vdW1) the above formulation of van der Waerden theorem and
consider the following statements:

(vdW2) Let r ≥ 1 and N =
r⋃
i=1

Ci. There exists i ∈ [1, r] such that Ci contains

arithmetic progression of arbitrary finite length.

(vdW3) Let r ≥ 1 and N =
r⋃
i=1

Ci. For any finite set F ⊆ N there exists i ∈ [1, r]

such that Ci contains affine images of F .

(vdW4) Let r ≥ 1 and N =
r⋃
i=1

Ci. There exists i ∈ [1, r] such that Ci contains

affine images of every finite set F ⊆ N.
Let (vdWi∗), i = 1, 2, 3, 4 be the statements obtained from (vdWi), i = 1, 2, 3, 4 by chang-
ing N to Z in their formulations.

Proposition 2.2.2. (vdWi), (vdWi∗), i = 1, 2, 3, 4 are all equivalent.
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Proof. Exercise.

(vdW2) states that for any finite partition of N, one of the cells contains arithmetic
progressions of arbitrary finite length. Equivalently, any finite colouring of N contains
monochromatic arithmetic progressions of arbitrary finite length.

We remark that one cannot, in general, expect to get from any finite colouring of N a
monochromatic infinite arithmetic progression (why?).

2.2.1 Topological dynamics proof of van der Waerden Theorem

The topological dynamics proof we give here is due to Furstenberg and Weiss [40].

Proposition 2.2.3.
Let l ≥ 1 and ε > 0. For any compact metric space (X, d) and homeomorphism T : X → X
there exist x ∈ X and N ≥ 1 such that

d(x, T iNx) < ε for all 1 ≤ i ≤ l. (2.3)

Proof. Apply Corollary 1.7.3 and Lemma 1.7.6.(iv)

Let us denote with (vdW-dynamic) the statement of the above proposition.

Theorem 2.2.4. (vdW-dynamic) implies (vdW1*).

Proof. Let r, k ≥ 1 and let Z =
r⋃
i=1

Ci. Set W = {1, 2, . . . , r} and consider the full shift

(W Z, T ). Let γ ∈ WZ be defined by:

γn = i if and only if n ∈ Ci.

Let X := {T nγ | n ∈ Z} be the orbit closure of γ and consider the subsystem (X,TX).
Applying (vdW-dynamic) with ε := 2 and l := k − 1, we get x ∈ X and N ≥ 1 such

that

d(x, T jNx) < 2 for all 1 ≤ j ≤ k − 1.

Thus, by Lemma 1.2.3.(ie),

x0 =
(
TNx

)
0

= . . . =
(
T (k−1)Nx

)
0
, i.e. x0 = xN = . . . = x(k−1)N .

Since x ∈ X, by letting p = (k − 1)N , we get the existence of M ∈ Z such that

d(x, TMγ) < 2−p+1, hence, x[−(k−1)N,(k−1)N ] = (TMγ)[−(k−1)N,(k−1)N ].

Let i := x0. It follows that i = x0 = xN = . . . x(k−1)N , hence

i = (TMγ)0 = (TMγ)N = . . . = (TMγ)(k−1)N , i.e. i = γM = γM+N = . . . = γM+(k−1)N .
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By the definition of γ, it follows that the k-term arithmetic progression

{M,M +N,M + 2N . . . ,M + (k − 1)N} (2.4)

is contained in Ci.

Theorem 2.2.5. (vdW1) implies (vdW-dynamic).

Proof. Let l ≥ 1, ε > 0, (X, d) be a compact metric space, and T : X → X be a
homeomorphism. Since X is compact, it is totally bounded (see B.10.15). Thus, there
exists a finite cover of X by ε/2-balls. From this we can construct a finite cover of X by
pairwise disjoint sets U1, . . . , Ur of less than ε diameter (see A.2.3).

Let y ∈ X and define for all i = 1, . . . , r,

Ci := {n ∈ N | T ny ∈ Ui}.

Then N =
r⋃
i=1

Ci, and the Ci’s are pairwise disjoint, so by taking the nonempty ones of

them we get a finite partition of N.
Applying (vdW1), one of the cells Ci contains an arithmetic progression {a, a +

N, . . . , a + lN} of length l + 1, where a ∈ N, and N ≥ 1, since l ≥ 1. This means
that

T ay ∈ Ui, T a+Ny ∈ Ui, . . . , T a+lNy ∈ Ui.

By letting x := T ay, it follows that {x, TNx, . . . , T lNx} ⊆ Ui. Since Ui is of diameter less
than ε, the conclusion follows.

2.2.2 The compactness principle

The compactness principle, in very general terms, is a way of going from the infinite
to the finite. It gives us a ”finite” (or finitary) Ramsey-type statement providing the
corresponding ”infinite” Ramsey-type statement is true.

Theorem 2.2.6 (The Compactness Principle).
Let r ≥ 1 and let F be a family of finite subsets of Z+. Assume that for every r-colouring
of Z+ there is a monochromatic member of F . Then there exists a least positive integer
N = N(F , r) such that, for every r-colouring of [1, N ], there is a monochromatic member
of F .

Proof. The proof we give is essentially what is known as Cantor’s diagonal argument. Let
r ≥ 1 be fixed and assume that every r-colouring of Z+ admits a monochromatic member
of F . Assume by contradiction that for each n ≥ 1 there exists an r-colouring

χn : [1, n]→ [1, r]
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with no monochromatic member of F . We proceed by constructing a specific r-colouring
χ of Z+. Since there are only finitely many colours, among χ1(1), χ2(1), . . . , there must be
some colour that appears an infinite number of times. Call this colour c1, and let C1 be the
infinite set of all colourings χj with χj(1) = c1. Within the set of colours {χj(2) | χj ∈ C1}
there must be some colour c2 that occurs an infinite number of times. Let C2 ⊆ C1 be the
infinite set of all colourings χj ∈ C1 with χj(2) = c2. Continuing in this way, we find for
each k ≥ 2 a colour ck such that the family of colourings

Ck = {χj ∈ Ck−1 | χj(k) = ck}

is infinite. We define the r-colouring

χ : Z+ → [1, r], χ(k) = ck.

Then χ has the property that for every k ≥ 1, Ck is the collection of colourings χj with
χ(i) = χj(i) for all i = 1, . . . , k.

By assumption, χ admits a monochromatic member of F , say S. Let M := maxS and
take some arbitrary colouring χj ∈ CM . Then χj|S = χ|S, hence S ∈ F is monochromatic
under χj. This contradicts our assumption that all of the χn’s avoid monochromatic
members of F .

Remark 2.2.7. The compactness principle does not give us any bound for N(F , r); it only
gives us its existence.

Corollary 2.2.8. Let r ≥ 1 and let F be a family of finite subsets of Z+. The following
are equivalent:

(i) For every r-colouring of Z+ there is a monochromatic member of F .

(ii) There exists a least positive integer N = N(F , r) such that, for every r-colouring of
[1, N ], there is a monochromatic member of F .

(iii) There exists a least positive integer N = N(F , r) such that, for all m ≥ N and for
every r-colouring of [1,m], there is a monochromatic member of F .

Proof. (i)⇒ (ii) By the Compactness Principle.
(ii)⇒ (iii) If m ≥ N(F , r), and χ is an r-colouring of [1,m], then we can apply (ii) for its
restriction to [1, N(F , r)] to get a monochromatic member of F .
(iii)⇒ (i) is obvious.

2.2.3 Finitary version of van der Waerden theorem

As a consequence of the Compactness Principle, we get the following
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Theorem 2.2.9 (Finitary van der Waerden theorem).
Let r, k ≥ 1. There exists a least positive integer W = W (k, r) such that for any n ≥ W

and for any partition [1, n] =
r⋃
i=1

Ci of [1, n], some Ci contains an arithmetic progression

of length k.

In terms of colourings, there exists a least positive integer W = W (k, r) such that for all
n ≥ W , and for any r-colouring of [1, n] there is a monochromatic arithmetic progression
of length k. In fact, by Corollary 2.2.8, van der Waerden theorem and its finitary version
are equivalent.

Definition 2.2.10. The numbers W (r, k) are called the van der Waerden numbers.

We have that W (1, k) = k for any k ≥ 1, since one colour produces only trivial
colourings. W (r, 2) = r + 1, since we may construct a colouring that avoids arithmetic
progressions of length 2 by using each color at most once, but once we use a color twice, a
length 2 arithmetic progression is formed.

The combinatorial proof of van der Waerden theorem proceeds by a double induction
on r and k and yields extremely large upper bounds for W (k, r). Shelah [105] proved that
van der Waerden numbers are primitive recursive. In 2001, Gowers [42] showed that van
der Waerden numbers with r ≥ 2 are bounded by

W (r, k) ≤ 22r
22
k+9

. (2.5)

There are only a few known nontrivial van der Waerden numbers. We refer to

http://www.st.ewi.tudelft.nl/sat/waerden.php

for known values and lower bounds for van der Waerden numbers.

2.2.4 Multidimensional van der Waerden Theorem

An affine image of a set F ⊆ Nd (resp. F ⊆ Zd) is a set of the form

a+ bF = {a+ bf | f ∈ F} where a ∈ Nd, b ∈ Z+ ( resp. a ∈ Zd, b ∈ Z \ {0}). (2.6)

Here is the formulation of the multidimensional analogue of van der Waerden’s theorem.
It was first proved by Grünwald (also referred to in the literature by the name of Gallai),
who apparently never published his proof (Grünwald’s authorship is acknowledged in [93,
p.123]).

Theorem 2.2.11 (Multidimensional van der Waerden).

Let d ≥ 1, r ≥ 1, and Nd =
r⋃
i=1

Ci be an r-partition of Nd. There exists i ∈ [1, r] such that

Ci contains affine images of every finite set F ⊆ Nd.

Proof. Exercise.

http://www.st.ewi.tudelft.nl/sat/waerden.php
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2.2.5 Polynomial van der Waerden’s theorem

The following generalization of van der Waerden theorem is due to Bergelson and Leib-
man [13], who proved it using topological dynamics methods. A combinatorial proof was
obtained in 2000 by Walters [118].

Theorem 2.2.12 (Polynomial van der Waerden theorem). [13]
Let k ≥ 1, and p1, . . . , pk : Z→ Z be polynomials of one variable with integer coefficients,
which vanish at the origin (i.e. pi(0) = 0 for all i = 1, . . . , k). For any finite colouring of
Z, there exists a monochromatic configuration of the form

{a+ p1(d), . . . , a+ pk(d)}, a, d ∈ Z, d 6= 0.

The case with a single polynomial was proved by Furstenberg [35] and Sarkozy [102]
independently.

Remark that by specializing to the linear case pi(n) := in, i = 1, . . . , k one recovers the
ordinary van der Waerden theorem.

2.3 The ultrafilter approach to Ramsey theory

We present now a different approach to Ramsey theory, based on ultrafilters via the Stone-
Čech compactification. We refer to [56] or to the surveys [11, 7, 8] for details.

Definition 2.3.1. Let D be any set. A filter on D is a nonempty set F of subsets of D
with the following properties:

(i) ∅ ∈/F .

(ii) If A,B ∈ F , then A ∩B ∈ F .

(iii) If A ∈ F and A ⊆ B ⊆ D, then B ∈ F .

We remark that D ∈ F for any filter F on D. A classic example of a filter is the set
of neighborhoods of a point in a topological space. If D is an infinite set, an example of a
filter on D is the family of cofinite subsets of D, defined to be those subsets of D whose
complement is finite.

Definition 2.3.2. An ultrafilter on D is a filter on D which is not properly contained in
any other filter on D.

Proposition 2.3.3. Let U ⊆ P(D). The following are equivalent.

(i) U is an ultrafilter on D.

(ii) U has the finite intersection property and for each A ∈ P(D)\U there is some B ∈ U
such that A ∩B = ∅.
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(iii) U is maximal with respect to the finite intersection property. (That is, U is a maximal
member of {V ⊆ P(D) | V has the finite intersection property}.)

(iv) U is a filter on D and for any collection C1, . . . , Cn of subsets of D, if
n⋃
i=1

Ci ∈ U ,

then Cj ∈ U for some j = 1, . . . n.

(v) U is a filter on D and for all A ⊆ D either A ∈ U or D \ A ∈ U .

Proof. Exercise. See [56, Theorem 3.6, p.49].

If a ∈ D, then e(a) := {A ∈ P(D) | a ∈ A} is easily seen to be an ultrafilter on D,
called the principal ultrafilter defined by a. It is immediate the fact that e(a) = e(b) if
and only if a = b, so e is an embedding of D into the set of ultrafilters of D.

Proposition 2.3.4. Let U be an ultrafilter on D. The following are equivalent:

(i) U is a principal ultrafilter.

(ii) There is some F ∈ Pf (D) such that F ∈ U .

(iii) The set {A ⊆ D | D \ A is finite } is not contained in U .

(iv)
⋂
A∈U A 6= ∅.

(v) There is some x ∈ D such that
⋂
A∈U A = {x}.

Proof. Exercise. See [56, Theorem 3.7, p.50].

Proposition 2.3.5. Let D be a set and let A be a subset of P(D) which has the finite
intersection property. Then there is an ultrafilter U on D such that A ⊆ U .

Proof. Exercise.

Corollary 2.3.6. Let D be a set, let F be a filter on D, and let A ⊆ D. Then A ∈/F if
and only if there is some ultrafilter U with F ∪ {D \ A} ⊆ U .

Proof. Exercise.

To see that non-principal ultrafilters exist, take, for example,

A = {A ⊆ Z+ | Z+ \ A is finite}.

Clearly A has the finite intersection property, so there is an ultrafilter U on Z+ such that
A ⊆ U . It is easy to see that such U cannot be principal.

The following result shows that questions in Ramsey theory are questions about ultra-
filters.

Proposition 2.3.7. Let D be a set and let G ⊆ P(D). The following are equivalent.
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(i) Whenever r ≥ 1 and D =
⋃r
i=1Ci, there exists i ∈ [1, r] and G ∈ G such that G ⊆ Ci.

(ii) There is an ultrafilter U on D such that for every member A of U , there exists G ∈ G
with G ⊆ A.

Proof. Exercise.

Those more familiar with measures may find it helpful to view an ultrafilter on D as
a {0, 1}-valued finitely additive measure on P(D). Given an ultrafilter p on D, define a
mapping µp : P(D) → {0, 1} by µp(A) = 1 ⇔ A ∈ p. It is easy to see that µp(∅) =
0, µp(D) = 1, and the fact that for any finite collection of pairwise disjoint sets C1, . . . , Cn,

one has µp

(
n⋃
i=1

Ci

)
=

n∑
i=1

µp(Ci). The members of the ultrafilters are the ”big” sets.

2.3.1 The Stone-Čech compactification

Let D be a discrete topological space. We shall denote with p, q ultrafilters on D and we
shall use the following notations

βD = {p | p ultrafilter on D}, (2.7)

Â = {p ∈ βD | A ∈ p} for any A ⊆ D, (2.8)

B = {Â | A ⊆ D}. (2.9)

Lemma 2.3.8. Let A,B ⊆ D.

(i) Â ∩B = Â ∩ B̂ and Â ∪B = Â ∪ B̂.

(ii) D̂ \ A = βD \ Â.

(iii) Â = ∅ if and only if A = ∅.

(iv) Â = βD if and only if A = D.

(v) Â = B̂ if and only if A = B.

Proof. Exercise. See [56, Lemma 3.17, p.53].

It follows that the family B forms a basis for a topology on βD. We define the topology
of βD to be the topology which has these sets as a basis.

We consider any a ∈ D as an element of βD by identifying it with the principal filter
e(a) defined by a.

Theorem 2.3.9. βD is the Stone-Čech compactification of D.

Proof. See [56, Theorem 3.27, p.56].
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Being a nice compact Hausdorff space, βD is, for infinite discrete spaces D, quite a
strange object.

Proposition 2.3.10. Let D be an infinite discrete topological space.

(i) |βD| = 22|D|. In particular, |βZ+| = 2c, where c is the cardinality of the continuum,
c = |R| = 2ℵ0.

(ii) βD is not metrizable.

(iii) Any infinite closed subset of βD contains a homeomorphic copy of all βZ+.

Proof. (i) See [56, Section 3.6, p.66].

(ii) Otherwise, being a compact and hence separable metric space, it would have cardi-
nality not exceeding c.

(iii) See [56, Theorem 3.59, p.66].

2.3.2 Topological semigroups

In the sequel, (S,+) is a semigroup. For every A,B ⊆ S, A+B = {a+ b | a ∈ A, b ∈ B}.
An element x ∈ S is an idempotent if and only if x + x = x. We shall denote with

E(S) the set of all idempotents of S.

Definition 2.3.11. Let ∅ 6= L,R, I ⊆ S.

(i) L is a left ideal of S if and only if S + L ⊆ L.

(ii) R is a right ideal of S if and only if R + S ⊆ R.

(iii) I is an ideal of S if and only if I is both a left and a right ideal of S.

Of special importance is the notion of minimal left and right ideals. By this we mean
simply left or right ideals which are minimal with respect to set inclusion.

Let (S,+) be a semigroup with S a topological space and define for each x ∈ S, the
functions

ρx, λx : S → S, ρx(y) = y + x, λx(y) = x+ y. (2.10)

Definition 2.3.12. (i) (S,+) is a right topological semigroup if ρx is continuous
for all x ∈ S.

(ii) (S,+) is a left topological semigroup if λx is continuous for all x ∈ S.

(iii) (S,+) is a semitopological semigroup if it is both a left and a right topological
semigroup.
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(iv) (S,+) is a topological semigroup if + : S × S → S is continuous.

We shall be concerned with compact Hausdorff right topological semigroups. Of fun-
damental importance is the following result.

Theorem 2.3.13. Any compact Hausdorff right topological semigroup has an idempotent.

Proof. See [56, Theorem 2.5, p.33].

Proposition 2.3.14. Let (S,+) be a compact Hausdorff right topological semigroup. Then
every left ideal of S contains a minimal left ideal. Minimal left ideals are closed, and each
minimal left ideal has an idempotent.

Proof. See [56, Corollary 2.5, p.34].

Definition 2.3.15. A minimal idempotent of (S,+) is an idempotent which belongs to
a minimal left ideal.

Hence, any compact Hausdorff right topological semigroup has minimal idempotents.

2.3.3 The Stone-Čech compactification of Z+

Let us consider the discrete semigroup (Z+,+) and its Stone-Čech compactification βZ+.
It is natural to attempt to extend the addition + from Z+ to βZ+. We recall that we
consider Z+ ⊆ βZ+, by identifying n ∈ Z+ with the principal ultrafilter e(n).

We define the following operation on βZ+: for all p, q ∈ βZ+,

p+ q = {A ⊆ Z+ | {n ∈ Z+ | A− n ∈ q} ∈ p}. (2.11)

Proposition 2.3.16. (i) + extends to βZ+ the addition + on Z+.

(ii) (βZ+,+) is a right topological semigroup.

(iii) (βZ+,+) is not commutative. In fact, for all non-principal ultrafilters p, q ∈ βZ+,
we have that p+ q 6= q + p.

Proof. (i), (ii) See [11, p. 43-44], or, for arbitrary discrete semigroups, [56, Chapter 4].
(iii) See [56, Theorem 6.9, p.109].

Proposition 2.3.17. (i) Any idempotent ultrafilter is non-principal.

(ii) There are minimal idempotents in βZ+.

Proof. (i) This follows from the fact that (Z+,+) has no idempotents.

(ii) Apply the fact that (βZ+,+) is a compact Hausdorff right topological semigroup.
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Proposition 2.3.18. Let p be an idempotent ultrafilter and define for all A ⊆ Z+,

A?(p) := {n ∈ A | A− n ∈ p}. (2.12)

Then

(i) For every A ∈ p, A?(p) ∈ p.

(ii) For each n ∈ A?(p), A?(p)− n ∈ p.

Proof. (i) We have that p + p = {A ⊆ Z+ | {n ∈ Z+ | (A − n) ∈ p} ∈ p}. Hence,
A ∈ p = p + p implies {n ∈ Z+ | (A− n) ∈ p} ∈ p. In particular, A?(p) = A ∩ {n ∈
Z+ | A− n ∈ p} ∈ p.

(ii) Let n ∈ A?(p), and let B := A−n. Then B ∈ p and, by (i), B?(p) ∈ p. We prove that
B?(p) ⊆ A?(p)−n and then apply (ii) from the definition of a filter to conclude that
A?(p) − n ∈ p. Assume that m ∈ B?(p). It follows that m ∈ B, hence m + n ∈ A.
Furthermore, B −m ∈ p, that is A− (n + m) ∈ p. We get that m + n ∈ A?(p), i.e.
m ∈ A?(p)− n.

Property (i) from the above proposition is a shift-invariance property of idempotent
ultrafilters.

2.3.4 Finite Sums Theorem

In this section, we shall give an ultrafilter proof of Hindman’s classical Finite Sums theorem
[55], which contains as very special cases two early classical results in Ramsey theory:
Hilbert theorem 1.6.13 and Schur theorem. Hindman’s original proof, elementary though
difficult, was greatly simplified by Baumgartner [3]. A topological dynamics proof was
given by Furstenberg and Weiss [40].

Given an infinite sequence (xn)n≥1 in Z+, the IP-set generated by (xn) is the set
FS
(
(xn)n≥1

)
of finite sums of elements of (xn) with distinct indices:

FS
(
(xn)n≥1

)
=

{∑
m∈F

xm | F is a finite nonempty subset of Z+

}
. (2.13)

The term ”IP-set”, coined by Furstenberg and Weiss [40], stands for infinite-dimensional
parallelepiped, as IP-sets can be viewed as a natural generalization of the notion of a
parallelepiped of dimension d.

Furthermore, for any finite sequence (xk)
n
k=1, let

FS
(
(xk)

n
k=1

)
= {

∑
m∈F

xm | F is a finite nonempty subset of {1, . . . , n}}. (2.14)

Then FS
(
(xn)n≥1

)
=
⋃
n≥1

FS
(
(xk)

n
k=1

)
.
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Theorem 2.3.19. Let p ∈ βZ+ be a minimal idempotent and let A ∈ p. There exists a
sequence (xn)n≥1 in Z+ such that FS

(
(xn)n≥1

)
⊆ A.

Proof. Let p be a minimal idempotent and A ∈ p. By Proposition 2.3.18.(i), we have that
A?(p) ∈ p. We define (xn)n≥1 in Z+ such that FS

(
(xk)

n
k=1

)
⊆ A?(p) for all n ≥ 1. Since

A?(p) ⊆ A, the conclusion follows.
n = 1: Take x1 ∈ A?(p) arbitrary. Remark that A?(p) is nonempty, since p is an ultrafilter,
hence ∅ ∈/A.
n ⇒ n + 1: Let n ≥ 1 and assume that we have chosen (xk)

n
k=1 satisfying FS

(
(xk)

n
k=1

)
⊆

A?(p). Let
E = FS

(
(xk)

n
k=1

)
. (2.15)

Then E is a finite subset of Z+ and for each a ∈ E we have, by Proposition 2.3.18.(ii),
that A?(p)− a ∈ p. Hence, B := A?(p) ∩

⋂
a∈E

(
A?(p)− a

)
∈ p, so we can pick xn+1 ∈ B.

Then xn+1 ∈ A?(p) and given a ∈ E, xn+1 + a ∈ A?(p). Thus, FS
(
(xk)

n+1
k=1

)
⊆ A?(p).

As an immediate corollary we obtain the Finite Sums theorem.

Corollary 2.3.20 (Finite Sums theorem).

Let r ≥ 1 and Z+ =
r⋃
i=1

Ci. There exist i ∈ [1, r] and a sequence (xn)n≥1 in Z+ such that

such that FS
(
(xn)n≥1

)
⊆ Ci.

Proof. By Proposition 2.3.17.(ii), there exists a minimal idempotent p ∈ βZ+. Since
Z+ ∈ p, we can apply Proposition 2.3.3.(iv) to get i ∈ [1, r] such that Ci ∈ p. The
conclusion follows from Theorem 2.3.19.

As an immediate corollary, we obtain Schur theorem, one of the earliest results in
Ramsey theory.

Corollary 2.3.21 (Schur theorem). [104]

Let r ≥ 1 and let Z+ =
r⋃
i=1

Ci. There exist i ∈ [1, r] and x, y ∈ N such that {x, y, x+y} ⊆ Ci.

Hilbert theorem 1.6.13, proved in Section 1.6.2 using topological dynamics, is also an
immediate consequence of Finite Sums theorem.

Corollary 2.3.22 ( see Hilbert theorem 1.6.13).

Let r ∈ Z+ and N =
r⋃
i=1

Ci. Then for any l ≥ 1 there exist n1 ≤ n2 ≤ . . . ≤ nl ∈ N such

that infinitely many translates of FS
(
n1, . . . , nl

)
belong to the same Ci. That is,⋃

a∈B

(
a+ FS

(
n1, . . . , nl

))
⊆ Ci

for some finite sequence n1 ≤ n2 ≤ . . . ≤ nl in N and some infinite set B ⊆ N.

Proof. Exercise.
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2.3.5 Ultrafilter proof of van der Waerden

Theorem 2.3.23. Let p ∈ βZ+ be a minimal idempotent and let A ∈ p. Then A contains
arbitrarily long arithmetic progressions.

Proof. See [11, Theorem 3.11, p. 50].

As an immediate corollary, we get van der Waerden theorem.

Corollary 2.3.24. Let r ≥ 1 and Z+ =
r⋃
i=1

Ci. There exists i ∈ [1, r] such that Ci contains

arithmetic progression of arbitrary finite length.

2.3.6 Ultralimits

Definition 2.3.25. Let p ∈ βZ+, X be a Hausdorff topological space, x ∈ X, and (xn)n≥1

be a sequence in X. Then x is said to be a p-limit of (xn) if

{n ∈ Z+ | xn ∈ U} ∈ p

for every open neighborhood U of x.

We write p−limxn = x.

Proposition 2.3.26. Let X be a Hausdorff topological space and (xn)n≥1 be a sequence in
X.

(i) For every p ∈ βZ+, the following are satisfied:

(a) The p-limit of (xn), if exists, is unique.

(b) If X is compact, then p−limxn exists.

(c) If f : X → Y is continuous and p−limxn = x, then p−lim f(xn) = f(x).

(ii) lim
n→∞

xn = x implies p−limxn = x for every non-principal ultrafilter p.

Proof. Exercise.

Proposition 2.3.27. Let (xn)n≥1, (yn)n≥1 be bounded sequences in R, and p be a non-
principal ultrafilter on Z+.

(i) (xn) has a unique p-limit. If a ≤ xn ≤ b, then a ≤ p−limxn ≤ b.

(ii) For any c ∈ R, p−lim cxn = c · p−limxn.

(iii) p−lim(xn + yn) = p−limxn + p−lim yn.

(iv) If lim
n→∞

(xn − yn) = 0, then p−limxn = p−lim yn.

Proof. Exercise.
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Measure-preserving systems

In the following we shall consider only probability spaces.

Definition 3.0.28. Let (X,B, µ) and (Y, C, ν) be probability spaces, and T : X → Y be a
mapping.

(i) T is measurable if T−1(C) ⊆ B.

(ii) T is measure-preserving if T is measurable and

µ(T−1(A)) = ν(A) for all A ∈ C.

(iii) T is an invertible measure-preserving transformation if T is bijective and both
T and T−1 are measure-preserving.

We should write T : (X,B, µ) → (Y, C, ν) since the measure-preserving property de-
pends on B, C and µ, ν. Measure-preserving transformations are the structure preserving
maps (morphisms) between probability spaces.

We shall be mainly interested in the case (X,B, µ) = (Y, C, ν) since we wish to study
the iterates T n. When T : X → X is a measure-preserving transformation of (X,B, µ) we
also say that T preserves µ or that µ is T -invariant.

Definition 3.0.29. (i) A measure-preserving system (MPS for short) is a quadru-
ple (X,B, µ, T ), where (X,B, µ) is a probability space and T : X → X is a measure-
preserving transformation.

(ii) An invertible measure-preserving system is a quadruple (X,B, µ, T ), where
(X,B, µ) is a probability space and T : X → X is an invertible measure-preserving
transformation.

Lemma 3.0.30. (i) 1X : X → X, the identity on (X,B, µ), is an invertible measure-
preserving transformation.

(ii) The composition of two measure-preserving transformations is a measure-preserving
transformation.

49
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(iii) If (X,B, µ, T ) is a MPS, then µ(T−n(A)) = µ(A) for all A ∈ B and all n ≥ 1.

(iv) If (X,B, µ, T ) is invertible, then µ(T n(A)) = µ(A) for all A ∈ B and all n ∈ Z.

Proof. Exercise.

Lemma 3.0.31. Let (X,B, µ) and (Y, C, ν) be probability spaces and T : X → Y be bijective
such that both T and T−1 are measurable. The following are equivalent

(i) T is measure-preserving.

(ii) µ(B) = ν(T (B))) for all B ∈ B.

(iii) T−1 is measure-preserving.

Proof. Exercise.

In practice it would be difficult to check, using Definition 3.0.28, whether a given trans-
formation is measure-preserving or not, since one usually does not have explicit knowledge
of all the members of B. The following result is very useful.

Proposition 3.0.32. Let (X,B, µ) and (Y, C, ν) be probability spaces and T : X → Y be
a mapping. The following are equivalent

(i) T is a measure-preserving transformation.

(ii) T−1(A) ∈ B and µ(T−1(A)) = ν(A) for each A ∈ S, where S is a semialgebra that
generates C.

Proof. (i)⇒ (ii) Obviously.
(ii)⇒ (i) Let

F = {A ∈ C | T−1(A) ∈ B and µ(T−1(A)) = ν(A)} ⊇ S.

We want to show that F = C.
Claim 1: F is a monotone class.

Proof: If (An)n≥1 is an increasing sequence in F , then lim
n→∞

An =
⋃
n≥1

An. Further-

more, (T−1(An)) is also increasing, hence lim
n→∞

T−1(An) =
⋃
n≥1

T−1(An) = T−1

(⋃
n≥1

An

)
=

T−1( lim
n→∞

An). We get that

(i) T−1( lim
n→∞

An) = lim
n→∞

T−1(An) ∈ B, by C.2.2.(iii), and

(ii) ν( lim
n→∞

An) = lim
n→∞

ν(An) = lim
n→∞

µ(T−1(An)) = µ( lim
n→∞

T−1(An)) = µ(T−1( lim
n→∞

An)),

by C.4.5.(i).
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Hence, lim
n→∞

An ∈ F . The case when (An)n≥1 is a decreasing sequence is similar. �

Claim 2: A(S) ⊆ F .

Proof: By (ii), we have that S ⊆ F . If A ∈ A(S), by C.1.7, A =
⋃m
i=1 Ai for some pairwise

disjoint sets A1, . . . , Am ∈ S. It follows that

(a) T−1(A) =
⋃m
i=1 T

−1(Am) ∈ B, by (ii) and

(b) ν(A) =
m∑
i=1

ν(Ai) =
m∑
i=1

µ(T−1(Ai)) = µ

(
m⋃
i=1

T−1(Ai)

)
= µ(T−1(A)), by the finite

additivity of µ. �

Apply now Halmos’ Monotone Class theorem C.2.6 to conclude that C = σ(S) = σ(A(S)) ⊆
F . Hence, F = C.

3.1 The induced operator

For any measurable space (X,B), we shall use the notations

(i) MC(X,B) is the set of all complex-valued measurable functions f : X → C.

(ii) MR(X,B) is the set of all real-valued measurable functions f : X → R.

Definition 3.1.1. Let (X,B), (Y, C) be measurable spaces and T : X → Y be a measurable
transformation. The operator

UT :MC(Y, C)→MC(X,B), UT (f) = f ◦ T (3.1)

is called the operator induced by T .

Definition 3.1.2. A mapping f ∈ MC(Y, C) is said to be T -invariant if f is a fixed
point of UT , i.e. UT (f) = f .

The following lemmas collect some basic properties of the induced operator.

Lemma 3.1.3. Let (X,B), (Y, C), (Z,D) be measurable spaces, T : X → Y, S : Y → Z be
measurable transformations.

(i) US◦T = UT ◦ US.

(ii) UT is linear and UT (f · g) = (UTf) · (UTg) for all f, g ∈MC(Y, C).

(iii) If f : Y → C, f(y) = c is a constant function, then UT (f)(x) = c for every x ∈ X.

(iv) UT (MR(Y, C)) ⊆MR(X,B).
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(v) If f ∈MR(Y, C) is nonnegative, then UTf is nonnegative too, hence UT is a positive
operator.

(vi) For all C ∈ C, UT (χC) = χT−1(C).

(vii) If f is a simple function in MC(Y, C), f =
n∑
i=1

ciχCi, ci ∈ C, Ci ∈ C, then UTf is a

simple function in MC(X,B), UTf =
n∑
i=1

ciχT−1(Ci).

Proof. Exercise.

Lemma 3.1.4. Let (X,B) be a measurable space and T : X → X be measurable.

(i) U1X = 1MC(X,B)

(ii) UTn = (UT )n for all n ∈ N.

(iii) If T : X → X is bijective and both T and T−1 are measurable, then UT is invertible
and its inverse is UT−1. Furthermore, UTn = (UT )n for all n ∈ Z.

Proof. Exercise.

Proposition 3.1.5.
Let (X,B, µ), (Y, C, ν) be probability spaces and T : X → Y be a measurable transformation.
The following are equivalent

(i) T is a measure-preserving transformation.

(ii) For all f ∈MC(Y, C), ∫
X

UTf dµ =

∫
Y

f dν. (3.2)

Proof. (i)⇒(ii) It suffices to prove the result when f is real-valued and, by considering
positive and negative parts of f , it suffices to consider non-negative functions. So, suppose

that f ≥ 0. If f is a measurable simple function, f =
n∑
i=1

ciχCi , then by Lemma 3.1.3.(vii),

UTf =
n∑
i=1

ciχT−1(Ci) is a measurable simple function, hence

∫
X

UTf dµ =
∑
i=1

ciµ(T−1(Ci)) =
∑
i=1

ciν(Ci), as T is measure-preserving

=

∫
Y

f dν.
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Otherwise, by C.9.3, there exists an increasing sequence of simple functions (sn) such that
0 ≤ sn ≤ f for all n, and lim

n→∞
sn(y) = f(y) for all y ∈ Y . Then (UT sn) is an increasing

sequence of simple functions such that 0 ≤ UT sn ≤ UTf , and for all x ∈ X,

lim
n→∞

(UT sn)(x) = lim
n→∞

sn(Tx) = f(Tx) = UTf(x).

Apply now C.10.1 to get that∫
X

UTf dµ = lim
n→∞

∫
X

UT sn dµ = lim
n→∞

∫
Y

sn dν =

∫
Y

f dν.

(ii)⇒(i) Let A ∈ C. Then χA ∈ MC(Y, C) and UT (χA) = χT−1(A) by Lemma 3.1.3.(vi).
Applying (ii) with f := χA, we get that

ν(A) =

∫
Y

χA dν =

∫
X

UT (χA) dµ =

∫
X

χT−1(A) dµ = µ(T−1(A)).

Theorem 3.1.6.
Let (X,B, µ), (Y, C, ν) be probability spaces, and T : X → X be a measure-preserving
transformation. For all 1 ≤ p <∞,

(i) UT (Lp(Y, C, ν)) ⊆ Lp(X,B, µ) and UT (LpR(Y, C, ν)) ⊆ LpR(X,B, µ),

(ii) the operator UT : Lp(Y, C, ν)→ Lp(X,B, µ) is a linear isometry, i.e.

‖UTf‖p = ‖f‖p for all f ∈ Lp(Y, C, ν). (3.3)

Proof. Let f ∈ Lp(Y, C, ν) and let g : Y → C, g(y) := |f(y)|p. Then g is integrable, since
f ∈ Lp(Y, C, ν) and, furthermore, UTg(x) = g(Tx) = |f(Tx)|p = |UTf(x)|p. Applying
Proposition 3.1.5 for g, it follows that∫

|UTf |p dµ =

∫
UTg dµ =

∫
g dν =

∫
|f |p dν.

Thus, UTf ∈ Lp(X,B, µ) and ‖UTf‖p = ‖f‖p.

Therefore a measure-preserving transformation T : X → Y induces a linear isometry
of Lp(Y, C, ν) and Lp(X,B, µ) for all 1 ≤ p <∞.

Proposition 3.1.7. If (X,B, µ, T ) is an invertible measure-preserving system, then UT is
an unitary operator on the Hilbert space L2(X,B, µ).

Proof. UT is invertible by Proposition 3.1.4. Furthermore, UT is an isometry.

The study of UT is called the spectral study of T and this is useful in formulating
concepts such as ergodicity and mixing.
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3.2 Invariant subsets

Let (X,B, µ, T ) be a MPS.

Definition 3.2.1. A set A ∈ B is invariant by T , or T -invariant if T−1(A) = A.

The fundamental property of this concept is the following: if A is T -invariant, then so
is X \ A. Thus, when A is T -invariant we obtain by restriction two well-defined transfor-
mations

TA : A→ A, TX\A : X \ A→ X \ A.

Hence, the existence of an invariant subset allows one to decompose the set X into two
disjoint subsets and study the transformation T in each of these subsets.

Furthermore, if µ(A) 6= 0, then one can consider the restriction µA of the measure µ to
A, defined as follows. Consider the σ-algebra A ∩ B on A and define

µA : A ∩ B → [0, 1], µA(A ∩B) =
µ(A ∩B)

µ(A)
.

Lemma 3.2.2. (i) The set of all T -invariant subsets of X is a σ-algebra on X.

(ii) If A ∈ B is T -invariant and µ(A) > 0, then (A,A ∩ B, µA, TA) is a MPS.

Proof. Exercise.

We shall denote with BT the σ-algebra of T -invariant subsets of X.

Proposition 3.2.3. For any A ∈ B, let us recall that

lim sup
n→∞

T−n(A) =
⋂
n≥1

⋃
i≥n

T−i(A).

Then

(i) lim sup
n→∞

T−n(A) is T -invariant.

(ii) µ(A∆ lim sup
n→∞

T−n(A)) ≤
∞∑
k=1

kµ(A∆T−1(A)). In particular, µ(A∆T−1(A)) = 0 im-

plies µ(A∆ lim sup
n→∞

T−n(A)) = 0.

Proof. Exercise.
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3.3 Bernoulli shift

Let W = {w1, . . . , wk} be a finite nonempty set with k = |W | ≥ 2, W Z be the full W -shift
and

T : W Z → W Z, (Tx)n = xn+1 for all n ∈ Z (3.4)

be the shift map. We refer to Section 1.2 for details.

We consider the measurable space (W,P(W )). Let (p1, . . . , pk) be a probability vector

with non-zero entries, i.e. pi > 0 for all i = 1, . . . , k and
k∑
i=1

pi = 1. Define a probability

measure ν : P(W )→ [0, 1] by

ν({wi}) = pi, ν(A) =
∑

w∈A ν({w}) for any (finite) subset of W .

The probability measure ν is called the (p1, . . . , pk)-product probability measure. Thus,
(W,P(W ), ν) is a probability space.

Consider the product probability space(
W Z,B =

⊗
i∈Z

P(W ), µ =
⊗
i∈Z

ν

)
=
∏
i∈Z

(W,P(W ), ν). (3.5)

We refer to C.5 for details.

Let us recall the following notations:

Cw
n = {x ∈ W Z | xn = w}, where n ∈ Z, w ∈ W, (3.6)

C
wi1 ,...,wit
n1,...,nt = {x ∈ W Z | xnj = wij for all j = 1, . . . , t} =

t⋂
j=1

C
wij
nj , (3.7)

where t ≥ 1, n1 < n2 < . . . < nt ∈ Z, wi1 , . . . , wit ∈ W,
RA
n = {x ∈ W Z | xn ∈ A} =

⋃
w∈A

Cw
n , where n ∈ Z, A ⊆ W, (3.8)

RA1,...,At
n1,...,nt

= {x ∈ W Z | xni ∈ Ai for all i = 1, . . . , t} =
t⋂
i=1

RAi
ni

=
t⋂
i=1

⋃
w∈Ai

Cw
n (3.9)

where t ≥ 1, n1 < n2 < . . . < nt ∈ Z, A1, . . . , At ⊆ W.

By a measurable rectangle we understand a set RA1,...,At
n1,...,nt

as in (3.9). We denote with
R the set of all measurable rectangles. Then B is the σ-algebra generated by R, and µ is
the unique probability measure on (X,B) such that

µ(RA1,...,At
n1,...,nt

) =
t∏
i=1

ν(Ai) for every rectangle RA1,...,At
n1,...,nt

. (3.10)
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In particular,

µ(Cwi
n ) = µ(R{wi}n ) = ν({wi}) = pi,

µ(C
wi1 ,...,wit
n1,...,nt ) =

t∏
j=1

pij .

We recall that we use the notations C for the set of all cylinders C
wi1 ,...,wit
n1,...,nt and Ce for

the set of elementary cylinders Cw
n .

Proposition 3.3.1. (i) S = C ∪ {∅} is a semialgebra on W Z.

(ii) B = σ(S) = σ(Ce).

(iii) B coincides with the Borel σ-algebra on W Z.

Proof. Exercise.

Proposition 3.3.2. (W Z,B, µ, T ) is an invertible MPS.

Proof. We know already that T is invertible. We apply Proposition 3.0.32 for the semial-
gebra S that generates B. Let C

wi1 ,...,wit
n1,...,nt ∈ C. Using Lemma 1.2.8.(v), we get that

T−1(C
wi1 ,...,wit
n1,...,nt ) = C

wi1 ,...,wit
n1+1,...,nt+1 ∈ S ⊆ B,

T (C
wi1 ,...,wit
n1,...,nt ) = C

wi1 ,...,wit
n1−1,...,nt−1 ∈ S ⊆ B,

µ(C
wi1 ,...,wit
n1,...,nt ) =

t∏
j=1

pij = µ(C
wi1 ,...,wit
n1+1,...,nt+1) = µ(T−1(C

wi1 ,...,wit
n1,...,nt )),

µ(C
wi1 ,...,wit
n1,...,nt ) =

t∏
j=1

pij = µ(C
wi1 ,...,wit
n1−1,...,nt−1) = µ(T (C

wi1 ,...,wit
n1,...,nt )).

Thus, both T and T−1 are measure-preserving.

The invertible MPS (W Z,B, µ, T ) is called the Bernoulli shift and is also denoted by
B(p1, . . . , pk).

3.4 Recurrence

Let (X,B, µ, T ) be a MPS. In this section we discuss the problem of recurrence, one of the
most basic questions to be asked about the natures of orbits of points and measurable sets.

Given a measurable set A ∈ B, we recall the following notations:

(i) Aret is the set of those points of A which return to A at least once.

(ii) Ainf is the set of those points of A which return to A infinitely often.
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Using the notations

A+ :=
⋃
n≥1

T−n(A), A? := A ∪ A+ =
⋃
n≥0

T−n(A),

we have that

Aret = A ∩
⋃
n≥1

T−n(A) = A ∩ A+, A \ Aret = A \ A+ = A? \ A+,

Ainf = A ∩
⋂
n≥1

⋃
m≥n

T−m(A) = A ∩
⋂
n≥1

T−n(A?)

A point x ∈ Aret is also said to be recurrent with respect to A, while a point x ∈ Ainf
is infinitely recurrent with respect to A.

Definition 3.4.1. A measurable set A ∈ B is called wandering if the sets

A, T−1(A), . . . , T−n(A), . . .

are pairwise disjoint.

Lemma 3.4.2. Let A ∈ B.

(i) A \ Aret is wandering.

(ii) A \ Ainf = A ∩
⋃
n≥0

T−n(A \ Aret).

Proof. Exercise.

Lemma 3.4.3. If (X,B, µ, T ) is a MPS, then µ(A+∆T−1(A+)) = 0 for all A ∈ B.

Proof. Let A ∈ B. Then T−1(A+) =
⋃
n≥2 T

−n(A), hence A+ = T−1(A)∪ T−1(A+). Thus,
T−1(A+) ⊆ A+ and µ(A+) = µ(T−1(A+)), as T is measure-preserving. We get that

µ(A+∆T−1(A+)) = µ(A+ \ T−1(A+)) = µ(A+)− µ(T−1(A+)) = 0.

Definition 3.4.4.

(i) T is recurrent if for all A ∈ B almost all points of A return to A.

(ii) T is infinitely recurrent if for all A ∈ B almost all points of A return infinitely
often to A.

Thus, T is recurrent if and only if µ(A \ Aret) = 0 if and only if µ(A) = µ(Aret). Further-
more, T is infinitely recurrent if and only if µ(A \Ainf ) = 0 if and only if µ(A) = µ(Ainf ).
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Definition 3.4.5.

(i) T is conservative if there are no wandering sets A with µ(A) > 0.

(ii) T is incompressible if whenever A ∈ B and T−1(A) ⊆ A, then µ(A \ T−1(A)) = 0.

The following theorem and its proof are due to F. B. Wright [122]. The crucial point is
the simple proof of (i)⇒(iv). The truth of this conclusion was already known before, but
only by heavy techniques: Halmos [50] and Taam [110].

Theorem 3.4.6. Let (X,B, µ) be a measure space and T : X → X be a measurable
transformation. The following are equivalent

(i) T is incompressible.

(ii) T is conservative.

(iii) T is recurrent.

(iv) T is infinitely recurrent.

(v) For all A ∈ B with µ(A) > 0, there exists n ≥ 1 such that µ(A ∩ T−n(A)) > 0.

(vi) For all A ∈ B with µ(A) > 0, there exist infinitely many n ≥ 1 such that µ(A ∩
T−n(A)) > 0.

Proof. Let A ∈ B.
(i) ⇒ (iii) We have that T−1(A?) = A+ ⊆ A? and A \ Aret = A? \ A+ = A? \ T−1(A?).
Since T is incompressible, it follows that µ(A \ Aret) = µ(A? \ T−1(A?)) = 0. Hence, T is
recurrent.

(iii)⇒ (i) Assume that T−1(A) ⊆ A. Then A+ = T−1(A), hence

µ(A \ T−1(A)) = µ(A \ A+) = µ(A \ Aret) = 0.

(ii) ⇒ (iii) By Lemma 3.4.2.(i), A \ Aret is wandering, hence using the fact that T is
conservative, µ(A \ Aret) = 0. Thus, T is recurrent.

(iii)⇒ (ii) Assume that A is wandering. Then the sets A and T−n(A) are disjoint for all
n ≥ 1, hence

Aret = A ∩ A+ =
⋃
n≥1

(A ∩ T−n(A)) = ∅.

Since T is recurrent, we have that µ(A) = µ(Aret) = 0.

(iv)⇒ (iii) Obvious.
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(i)⇒ (iv) By Lemma 3.4.2.(ii), we have that

A \ Ainf = A ∩
⋃
n≥0

T−n(A \ Aret) = A ∩
⋃
n≥0

T−n(A? \ T−1(A?))

= A ∩
⋃
n≥0

(
T−n(A?) \ T−n−1(A?)

)
.

Since T−1(A?) ⊆ A?, we get that T−n−1(A?) ⊆ T−n(A?). Apply now the fact that T
is incompressible to obtain µ

(
T−n(A?) \ T−n−1(A?)

)
= 0 for all n ≥ 0. Consequently,

µ(A \ Ainf ) = 0, hence T is infinitely recurrent.

(iii)⇒ (v) Assume that µ(A ∩ T−n(A)) = 0 for all n ≥ 1. Then

µ(Aret) = µ(A ∩ A+) = µ

(⋃
n≥1

(A ∩ T−n(A))

)
≤
∑
n≥1

µ(A ∩ T−n(A)) = 0,

hence µ(Aret) = 0. On the other hand, since T is recurrent, we have that µ(Aret) = µ(A) >
0. We have got a contradiction.

(v)⇒ (ii) If A is a wandering set, then A ∩ T−n(A) = ∅, hence µ(A ∩ T−n(A)) = 0 for all
n ≥ 1. By (v), we must have µ(A) = 0.

(vi)⇒ (v) is obvious.

(iv) ⇒ (vi) Assume that µ(A ∩ T−n(A)) > 0 only for finitely many n ≥ 1. Hence there
exists N ≥ 1 such that µ(A ∩ T−n(A)) = 0 for all n ≥ N . It follows that

µ(Ainf ) = µ

(⋂
n≥1

⋃
m≥n

A ∩ T−m(A)

)
≤ µ

( ⋃
m≥N

A ∩ T−m(A)

)
≤
∑
m≥N

µ(A ∩ T−m(A)) = 0.

On the other hand, T is infinitely recurrent, hence µ(Ainf ) = µ(A) > 0. We have got a
contradiction.

3.4.1 Poincaré Recurrence Theorem

Poincaré recurrence threorem may be considered to be the most basic result in ergodic
theory. Some of its physical and philosophical implications are indicated in [87, p. 34-36].

Theorem 3.4.7 (Poincaré Recurrence Theorem (1899)).
Let (X,B, µ, T ) be a MPS. Then for all A ∈ B with µ(A) > 0, there exists n ≥ 1 such that
µ(A ∩ T−n(A)) > 0.

Proof. We prove that T is conservative and then apply Theorem 3.4.6 to get the conclusion.
Let A ∈ B be a wandering set. Then A, T−1(A), . . . , T−n(A), . . . is a sequence of mutually
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disjoint measurable sets having the same measure, since T is measure-preserving. If µ(A) >
0, then

1 = µ(X) ≥ µ

(⋃
n≥0

T−n(A)

)
=
∞∑
n=0

µ
(
T−n(A)

)
=
∞∑
n=0

µ(A) =∞,

that is a contradiction. We must have then µ(A) = 0, hence T is conservative.

A quantitative version of Poincaré Recurrence Theorem is the following.

Proposition 3.4.8.
Let (X,B, µ, T ) be a MPS. If A ∈ B is such that µ(A) > 0, then there exists 1 ≤ N ≤ Φ
such that

µ(A ∩ T−N(A)) > 0,

where Φ =

⌈
1

µ(A)

⌉
.

Proof. Exercise.

Let us remark that Theorem 3.4.7 is false if a measure space of infinite measure is used.
The following example is taken from [120, p.26]:

Let us consider the measure-preserving system(Z, 2Z, µ, T ), where µ is given by µ({n}) =
1 for all n ∈ Z and T (n) = n+ 1. Let A = {0}. Then µ(A) = 1 > 0, while T n(0) = n ∈/A,
hence A ∩ T−n(A) = ∅ for all n ≥ 1.

3.5 Ergodicity

Let (X,B, µ, T ) be a MPS. If A ∈ B is T -invariant (i.e. T−1(A) = A), then also X \ A is
T -invariant and we could study T by studying two simpler transformations TA and TX\A.
If µ(A) 6= 0 and µ(X \A) 6= 0, the study of T has simplified. If µ(A) = 0 (or µ(X \A) = 0)
we can ignore A (or X \ A) and we have not significantly simplified T .

Hence, the idea of studying the measure-preserving transformations that cannot be
decomposed in this way is very natural. These transformations will be called ergodic.

Definition 3.5.1. Let (X,B, µ, T ) be a MPS. T is called ergodic if for all A ∈ B,

T−1(A) = A implies µ(A) = 0 or µ(X \ A) = 0. (3.11)

We also say that the MPS (X,B, µ, T ) is ergodic or that µ is T -ergodic.

Since µ(X \ A) = µ(X) − µ(A) = 1 − µ(A), we have that µ(X \ A) = 0 is equivalent
with µ(A) = 1.

In the following we shall give some very useful equivalent characterizations of ergodicity.

Proposition 3.5.2. Let (X,B, µ, T ) be a MPS. The following are equivalent
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(i) T is ergodic.

(ii) For all A ∈ B, if µ(T−1(A)∆A) = 0 then µ(A) = 0 or µ(A) = 1.

(iii) For all A ∈ B with µ(A) > 0, one has µ(A+) = 1.

(iv) For all A ∈ B with µ(A) > 0 and every N ∈ N, one has µ

(
∞⋃
n=N

T−n(A)

)
= 1.

(v) For all A,B ∈ B such that µ(A) > 0 and µ(B) > 0 and every N ∈ N there exists
n ≥ N such that µ(T−n(A) ∩B) > 0.

(vi) For all A,B ∈ B such that µ(A) > 0 and µ(B) > 0 there exists n ≥ 1 such that
µ(T−n(A) ∩B) > 0.

Proof. Exercise.

By (C.8.3), we have that µ(T−1(A)∆A) = 0 iff A ∼ T−1(A), i.e A and T−1(A) are
equal modulo sets of measure 0.

Furthermore, (iii) says that given a set A with positive measure, almost every point
x ∈ X will eventually visit A, while (vi) says that given two sets A and B both with
positive measure, elements of B will eventually visit A.

Remark 3.5.3. If T is invertible, then in the above characterization one can replace T−n

by T n.

The next theorem characterizes ergodicity in terms of the induced operator UT .

Proposition 3.5.4. Let (X,B, µ, T ) be a MPS. The following are equivalent

(i) T is ergodic.

(ii) Whenever f : X → C is measurable and UTf = f , then f is constant a.e..

(iii) Whenever f : X → C is measurable and UTf = f a.e., then f is constant a.e..

(iv) Whenever f : X → R is measurable and UTf = f , then f is constant a.e..

(v) Whenever f : X → R is measurable and UTf = f a.e., then f is constant a.e..

Proof. Exercise.

Remark 3.5.5. A similar characterization using functions from Lp(X,B, µ) or LpR(X,B, µ)
(p ≥ 1) can be given.

Example 3.5.6. (i) The identity transformation 1X is ergodic if and only if all members
of B have measure 0 or 1.

(ii) The Bernoulli shift is ergodic.
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(iii) Let (S1, Ra) be the rotation on the circle group. Then it is ergodic if and only if a is
not a root of unity.

Proof. (i) Obviously.

(ii) See Example ?? for the proof of a stronger fact.

(iii) See [119, Example (2), p.24].



Chapter 4

Ergodic theorems

In the following, (X,B, µ, T ) is a MDS.
For every f ∈MC(X,B), we consider the ergodic average

Snf : X → C, Snf(x) :=
1

n

n−1∑
k=0

f(T kx). (4.1)

We shall also use the following notations for f ∈MR(X,B):

f ?(x) := sup
n≥1

Snf(x), f?(x) := inf
n≥1

Snf(x), (4.2)

f(x) := lim inf
n→∞

Snf(x), f(x) := lim sup
n→∞

Snf(x). (4.3)

Lemma 4.0.7. Let f ∈MC(X,B) and n ≥ 1.

(i) If f is T -invariant (a.e.), then Snf = f (a.e.).

(ii) Snf ∈MC(X,B).

(iii) Snf =
1

n

n−1∑
k=0

UTkf .

(iv) For any p ≥ 1, f ∈ Lp(X,B, µ) (resp. LpR(X,B, µ)) implies Snf ∈ Lp(X,B, µ) (resp.
LpR(X,B, µ)).

(v) For all x ∈ X,
n+ 1

n
Sn+1(x)− Snf(Tx) =

1

n
f(x).

(vi) If f ∈MR(X,B), then f ◦ T = f and f ◦ T = f .

(vii)

∫
X

Snf dµ =

∫
X

f dµ.

63
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(viii) If f ∈ L1
R(X,B, µ) is nonnegative, then Snf ∈ L1

R(X,B, µ) is nonnegative and
‖Snf‖1 = ‖f‖1.

Proof. Exercise.

Lemma 4.0.8. Let A,B ∈ B and n ≥ 1.

(i) SnχA =
1

n

n−1∑
k=0

χT−k(A) and χB · SnχA =
1

n

n−1∑
k=0

χT−k(A)∩B.

(ii)

∫
X

SnχA = µ(A).

(iii)

∫
X

χB · SnχA dµ =
1

n

n−1∑
k=0

µ(T−k(A) ∩B).

Proof. Exercise.

4.1 Maximal Ergodic Theorems

A linear operator U : L1
R(X,B, µ) → L1

R(X,B, µ) is said to be positive if for all f ∈
L1

R(X,B, µ), f ≥ 0 implies Uf ≥ 0 a.e. We assume also that U is nonexpansive, i.e.
‖Uf‖1 ≤ ‖f‖1 for all f ∈ L1

R(X,B, µ).
We recall the following notations for an arbitrary mapping g : X → R and α ∈ R:

{g > α} := g−1((α,∞)), {g ≥ α} := g−1([α,∞)).

The following theorem was obtained by Hopf [57]; the proof we present here was given
by Garsia [41].

Theorem 4.1.1 (Hopf Maximal Ergodic Theorem).
Let U : L1

R(X,B, µ) → L1
R(X,B, µ) be a nonexpansive positive linear operator. For all

f ∈ L1
R(X,B, µ), ∫

{f?>0}
f dµ ≥ 0. (4.4)

where f ? = sup
n≥1

1

n

n−1∑
k=0

Ukf.

Proof. First, let us remark that f ? is measurable, as a supremum of measurable functions.
Hence, {f ? > 0} is a measurable set.

Define the sequence (fn)n≥0 in L1
R(X,B, µ) by:

f0 := 0, fn :=
n−1∑
k=0

Ukf for n ≥ 1
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and the sequence (Fn)n≥1 in L1
R(X,B, µ) by:

Fn := max
0≤k≤n

fk.

Let us remark that Fn ≥ f0 = 0 for all n ≥ 1 and that fn+1 = f + Ufn for all n ≥ 0.
Let n ≥ 1 and x ∈ {Fn > 0}. It follows that

Fn(x) = max
0≤k≤n

fk(x) = max
1≤k≤n

fk(x), since Fn(x) > 0

≤ max
1≤k≤n+1

fk(x) = max
0≤k≤n

fk+1(x) = max
0≤k≤n

(f + Ufk)(x) ≤ (f + UFn)(x),

since Fn ≥ fk, hence UFn ≥ Ufk by the positivity of U.

Claim For all n ≥ 1,
∫
{Fn>0} f dµ ≥ 0.

Proof:∫
{Fn>0}

f dµ ≥
∫
{Fn>0}

(Fn − UFn) dµ =

∫
{Fn>0}

Fn dµ−
∫
{Fn>0}

UFn dµ

=

∫
X

Fn dµ−
∫
{Fn>0}

UFn dµ, since Fn = 0 on X \ {Fn > 0}

≥
∫
X

Fn dµ−
∫
X

UFn dµ, since Fn ≥ 0, so UFn ≥ 0,

hence

∫
{Fn>0}

UFn dµ ≤
∫
X

UFn dµ

=

∫
X

|Fn| dµ−
∫
X

|UFn| dµ = ‖Fn‖1 − ‖UFn‖1

≥ 0. .

Furthermore, x ∈ {f ? > 0} if and only if there exists n ≥ 1 such that fn(x) > 0 if and
only if there exists n ≥ 1 such that Fn(x) > 0. Thus,

{f ? > 0} =
⋃
n≥1

{Fn > 0}.

Furthermore, since (Fn)n≥1 is increasing, we get that ({Fn > 0})n≥1 is an increasing se-
quence of measurable subsets of X. We can apply C.10.9.(v) to conclude that∫

{f?>0}
f dµ = lim

n→∞

∫
{Fn>0}

f dµ ≥ 0.

As an immediate consequence, we get the Yosida-Kakutani maximal ergodic theorem
[124].
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Theorem 4.1.2 (Maximal Ergodic Theorem).
Let (X,B, µ, T ) be a MPS. For all f ∈ L1

R(X,B, µ),∫
{f?>0}

f dµ ≥ 0, (4.5)

where f ? = sup
n≥1

Snf is defined in (4.2).

Proof. Apply Theorem 4.1.1 for the operator UT : L1
R(X,B, µ) → L1

R(X,B, µ) induced by
T , which is positive and nonexpansive, by see Lemma 3.1.3 and Theorem 3.1.6.

The following maximal ergodic inequality was already known to Wiener [121].

Corollary 4.1.3.
Let (X,B, µ, T ) be a MPS. For all f ∈ L1

R(X,B, µ) and all α ∈ R,∫
{f?>α}

f dµ ≥ αµ({f ? > α}). (4.6)

Proof. Let g := f − α. Then g ∈ L1
R(X,B, µ) and

g?(x) = sup
n≥1

1

n

n−1∑
k=0

g(T kx) = sup
n≥1

1

n

n−1∑
k=0

(f(T kx)− α) = f ?(x)− α.

Thus, {f ? > α} = {g? > 0}, so we can apply Theorem 4.1.2 for g to conclude that∫
{g?>0} g dµ ≥ 0. On the other hand,∫

{g?>0}
g dµ =

∫
{f?>α}

(f − α) dµ =

∫
{f?>α}

f dµ−
∫
{f?>α}

α dµ

=

∫
{f?>α}

f dµ− αµ({f ? > α}).

Corollary 4.1.4.
Let (X,B, µ, T ) be a MPS and A ⊆ X be T -invariant. For all f ∈ L1

R(X,B, µ) and all
α ∈ R, ∫

A∩{f?>α}
f dµ ≥ αµ(A ∩ {f ? > α}). (4.7)

Proof. Apply Corollary 4.1.3 to the MPS (A,B ∩ A, µA, TA).
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4.2 Birkhoff Ergodic Theorem

The following result of G. D. Birkhoff is the fundamental theorem of ergodic theory, known
as the Pointwise Ergodic Theorem or as just the Ergodic Theorem.

Theorem 4.2.1.
Let (X,B, µ, T ) be a MPS and f ∈ L1(X,B, µ). Then

(i) Snf converges a.e. to a function f+ satisfying f+ ◦ T = f+ a.e.

(ii) f+ ∈ L1(X,B, µ) and, in fact, ‖f+‖1 ≤ ‖f‖1.

(iii) If A ∈ B is T -invariant, then
∫
A
f dµ =

∫
A
f+ dµ.

(iv) If T is ergodic, then f+ is constant a.e., namely f+ =

∫
X

f dµ a.e..

Proof. By considering real and imaginary parts it suffices to consider f ∈ L1
R(X,B, µ).

(i) Let f = lim inf
n→∞

Snf, f = lim sup
n→∞

Snf be as in (4.3). Then, by Proposition 4.0.7.(vi),

we have that

f ◦ T = f and f ◦ T = f. (4.8)

We have to show that f = f a.e., i.e. that the set

A := {x ∈ X | f(x) < f(x)}. (4.9)

has measure 0.

For each α, β ∈ R with β < α, let

Eα,β := {x ∈ A | f(x) < β < α < f(x). (4.10)

Obviously, A =
⋃
{Eα,β | β < α and α, β are both rational}. Thus, in order to see

that µ(A) = 0 it is enough to show that µ(Eα,β) = 0 whenever β < α.

Claim 1: Eα,β is T -invariant, Eα,β ⊆ {f ? > α} and Eα,β ⊆ {(−f)? > −β}.
Proof: For all x ∈ X we have that x ∈ T−1(Eα,β) iff Tx ∈ Eα,β iff f(Tx) < β < α <

f(Tx) iff f(x) < β < α < f(x) (by (4.8)) iff x ∈ Eα,β.

If x ∈ Eα,β, then α < f(x) ≤ f ?(x), hence x ∈ {f ? > α}. Furthermore, if x ∈ Eα,β,
then f(x) = lim inf

n→∞
Snf(x) < β, so there exists n ≥ 1 such that Snf(x) < β. We get

that −β < −Snf(x) = Sn(−f)(x) ≤ (−f)?(x).
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Apply twice Corollary 4.1.4 o get that∫
Eα,β

f dµ =

∫
Eα,β∩{f?>α}

f ≥ αµ(Eα,β ∩ {f ? > α}) = αµ(Eα,β)

and similarly that

∫
Eα,β

(−f) dµ ≥ −βµ(Eα,β), hence

∫
Eα,β

f ≤ βµ(Eα,β). We con-

clude that αµ(Eα,β) ≤ βµ(Eα,β). Since β < α, we must have µ(Eα,β) = 0.

Therefore Snf converges a.e. to f+ := f . Furthermore, f+ ◦ T = f+ a.e., by (4.8).

In general, if f = g+ih : X → C, then Snf converges a.e. to f+ := g+ +ih+ = g+ih.

(ii) f+ is measurable, as the limit of a sequence of measurable mappings. Let

gn, hn : X → [0,+∞), gn(x) := |Snf(x)| , hn(x) := Sn(|f |)(x).

Then lim
n→∞

gn(x) = lim
n→∞

|Snf(x)| = |f+(x)| a.e.. Since f ∈ L1(X,B, µ), we have that

|f | ∈ L1
R(X,B, µ), so we can apply (i) for |f | to conclude that lim

n→∞
hn = |f |+ a.e..

Since obviously 0 ≤ gn ≤ hn for all n ≥ 1, we get that

|f+| ≤ |f |+ a.e.. (4.11)

It follows that∫
X

|f+| dµ ≤
∫
X

|f |+ dµ =

∫
X

lim
n→∞

hn dµ =

∫
X

lim inf
n

hn dµ (4.12)

≤ lim inf
n

∫
X

hn dµ by Fatou’s Lemma (4.13)

= lim inf
n

∫
X

|f | dµ by Proposition 4.0.7.(vii) (4.14)

=

∫
X

|f | dµ = ‖f‖1 <∞, since f ∈ L1(X,B, µ). (4.15)

Thus, f+ ∈ L1(X,B, µ) and ‖f+‖1 ≤ ‖f‖1.

(iii) Let A be T -invariant and define for each m ≥ 0 and k ∈ Z,

Am,k =

{
x ∈ A | k

2m
≤ f+(x) <

k + 1

2m

}
. (4.16)

It is easy to see that each Am,k is T -invariant. Furthermore, for fixedm ≥ 0, (Am,k)k∈Z

is a countable family of pairwise disjoint sets satisfying A =
⋃
k∈Z

Am,k.

EASY-begin Let m ≥ 0. For x ∈ A, take k := [2mf+(x)]. Then k ≤ 2mf+(x) <
k + 1, hence x ∈ Am,k. ??? Sa lamuresc cum fac cu multimea de masura 0 pe care
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nu am neaprat f+ ◦ T = f+??? EASY-end

Claim 2:

∫
Am,k

f dµ ≥ k

2m
µ(Am,k).

Proof: Let ε > 0, m ≥ 0, k ∈ Z. If x ∈ Am,k then
k

2m
− ε <

k

2m
≤ f+(x) =

f(x) = lim inf
n→∞

Snf(x), so Snf(x) >
k

2m
− ε for all n from some N on. It follows that

f ?(x) = sup
n≥1

Snf(x) >
k

2m
− ε.

Thus, we have proved that Am,k ⊆
{
f ? >

k

2m
− ε
}

. We apply Corollary 4.1.4 to

conclude that for all ε > 0,∫
Am,k

f dµ ≥
(
k

2m
− ε
)
µ(Am,k).

Let now ε→ 0 to get the claim. .

It follows that∫
Am,k

f+ dµ ≤ k + 1

2m
µ(Am,k) ≤

1

2m
µ(Am,k) +

∫
Am,k

f dµ.

Summing over k, we get that for all m ≥ 0,∫
A

f+ dµ =

∫
∪k∈ZAm,k

f+ dµ =
∑
k∈Z

∫
Am,k

f+ dµ by C.10.9.(v)

≤
∑
k∈Z

(
1

2m
µ(Am,k) +

∫
Am,k

f dµ

)

=
1

2m

∑
k∈Z

µ(Am,k) +
∑
k∈Z

∫
Am,k

f dµ =
µ(A)

2m
+

∫
A

f dµ.

By letting m→∞, it follows that∫
A

f+ dµ ≤
∫
A
f dµ.

Applying the above reasoning to −f instead of f gives∫
A

(−f)+ dµ ≤
∫
A

−f dµ,
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hence∫
A

f dµ ≥ −
∫
A

(−f)+ dµ = −
∫
A

(−f) dµ = −
∫
A

−f dµ =

∫
A

f dµ =

∫
A

f+ dµ,

since f+ = f a.e..

(iv) Since UT (f+) = f+ ◦ T = f+ a.e. and T is ergodic, we can use Theorem 3.5.4 to
conclude that f+(x) = c a.e. for some constant c ∈ C. By (iii), we get that

c = cµ(X) =

∫
X

f+ dµ =

∫
X

f dµ.

Let (X,B, µ, T ) be a MPS and f ∈ L1(X,B, µ). The time mean of f at x ∈ X is
defined to be

lim
n→∞

Snf(x) = lim
n→∞

1

n

n−1∑
k=0

f(T kx) if the limit exists. (4.17)

The space mean or phase mean of f is defined to be∫
X

f dµ. (4.18)

The ergodic theorem implies that for ergodic transformations the space mean is equal
almost everywhere with the time mean. This assertion, of great significance in the physical
aspects of the theory, is sometimes (incorrectly) identified with the ergodic theorem.

4.3 Ergodicity again

Let A ∈ B. For x ∈ X we could ask with what frequency do the elements of the orbit
{x, Tx, T 2x, . . .} lie in the set A (equivalently, how often the orbit {x, Tx, T 2x, . . .} of x
is in A). Since clearly, T nx ∈ A iff χA(T nx) = 1, it follows that the number of elements
{x, Tx, T 2x, . . . , T n−1x} in A is

∣∣[0, n− 1] ∩ {k ≥ 0 | T kx ∈ A}
∣∣ =

n−1∑
k=0

χA(T kx). (4.19)

The relative number of elements of {x, Tx, T 2x, . . . , T n−1x} in A (equivalently the average
number of times that the first n points of the orbit of x are in A) is given by∣∣[0, n− 1] ∩ {k ≥ 0 | T kx ∈ A}

∣∣
n

=
1

n

n−1∑
k=0

χA(T kx) = SnχA(x). (4.20)
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Theorem 4.3.1. Let (X,B, µ, T ) be a MPS. The following are equivalent

(i) T is ergodic.

(ii) For each f ∈ L1(X,B, µ), the time mean of f equals the space mean of f , i.e.:

lim
n→∞

Snf =

∫
X

f dµ a.e..

(iii) Whenever f ∈ Lp(X,B, µ) for 1 ≤ p ≤ ∞,

lim
n→∞

Snf =

∫
X

f dµ a.e..

(iv) For all A ∈ B,

lim
n→∞

∣∣[0, n− 1] ∩ {k ≥ 0 | T kx ∈ A}
∣∣

n
= µ(A) almost for all x ∈ X.

(or, equivalently lim
n→∞

SnχA = µ(A) a.e.)

Proof. (i)⇒(ii) By the Birkhoff Ergodic Theorem.

(ii)⇒(iii) Apply the fact that for p ≥ 1, Lp(X,B, µ) ⊆ L1(X,B, µ).

(iii)⇒(iv) Apply (iii) with f := χA ∈ Lp(X,B, µ).

(iv)⇒(i) Let A ∈ B be such that T−1(A) = A, hence T−k(A) = A for all k ≥ 1. Then

SnχA =
1

n

n−1∑
k=0

χT−k(A) = χA.

By (iv), it follows that

χA = lim
n→∞

SnχA = µ(A) a.e..

Hence, µ(A) ∈ {0, 1}.

Theorem 4.3.2. Let (X,B, µ, T ) be a MPS and let S be a semialgebra that generates B.
The following are equivalent

(i) T is ergodic.

(ii) For all A,B ∈ B,

lim
n→∞

1

n

n−1∑
i=0

µ(T−i(A) ∩B) = µ(A)µ(B). (4.21)



72 CHAPTER 4. ERGODIC THEOREMS

(iii) For all A,B ∈ S,

lim
n→∞

1

n

n−1∑
i=0

µ(T−i(A) ∩B) = µ(A)µ(B). (4.22)

Proof. (i)⇒(ii) Assume that T is ergodic and let A,B ∈ B. By Theorem 4.3.1.(iv), we have
that lim

n→∞
SnχA = µ(A) a.e. Multiplying by χB gives lim

n→∞
χBSnχA = µ(A)χB a.e.. Since

µ(A)χB ∈ L1(X,B, µ) and χBSnχA ∈ L1(X,B, µ) for all n ≥ 1, we can apply Lebesgue
Dominated Convergence Theorem to conclude that

lim
n→∞

∫
X

χBSnχA dµ =

∫
X

µ(A)χB dµ = µ(A)µ(B).

By Proposition 4.0.8, we have that∫
X

χB · SnχA dµ =
1

n

n−1∑
i=0

µ(T−i(A) ∩B).

(ii)⇒(i) Let A ∈ B be such that T−1(A) = A, hence T−i(A) = A for all i ≥ 0. Applying
(ii) with B := A we get that

µ(A)2 = lim
n→∞

1

n

n−1∑
i=0

µ(T−i(A) ∩ A) = lim
n→∞

1

n

n−1∑
i=0

µ(A) = µ(A).

It follows that µ(A) ∈ {0, 1}. Thus, T is ergodic.
(ii)⇔ (iii) Exercise.

Proposition 4.3.3. Let (X,B, µ, T ) be a MPS. The following are equivalent

(i) T is ergodic.

(ii) For each f, g ∈ L2(X,B, µ), we have

lim
n→∞

1

n

n−1∑
k=0

〈
Uk
Tf, g

〉
= 〈f,1〉〈1, g〉. (4.23)

where 1 is the constant function X → C, x 7→ 1.

Proof. Exercise.
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Appendix A

Set theory

Proposition A.0.4 (Zorn’s Lemma).
Let (X,≤) be a nonempty partially ordered set. Assume every chain (i.e. totally ordered
subset) has an upper bound (resp. a lower bound). Then X has a maximal element (resp.,
minimal element).

Let T : X → X. For any n ≥ 1, T n : X → X is the composition of T n-times. For
n ≥ 1 and A ⊆ X, we shall use the notation

T−n(A) := (T n)−1(A) = {x ∈ X | T nx ∈ A}. (A.1)

If T is bijective with inverse T−1, then the inverse of T n is (T−1)
n
, the composition of

T−1 n-times. We shall denote it with T−n. Thus,

T−n =
(
T−1

)n
= (T n)−1 . (A.2)

Lemma A.0.5. Let T : X → X and A ⊆ X.

(i) If T (A) ⊆ A, then T n+1(A) ⊆ T n(A) ⊆ A for all n ≥ 0.

(ii) If T (A) = A, then T n(A) = A for all n ≥ 0.

(iii) T−n−1(A) = T−1(T−n(A)) = T−n(T−1(A)).

(iv) If T−1(A) ⊆ A, then T−n−1(A) ⊆ T−n(A) ⊆ A for all n ≥ 0.

(v) If T−1(A) = A, then T (A) ⊆ A.

(vi) If T−1(A) = A, then T−n(A) = A for all n ≥ 0.

Lemma A.0.6. Let T : X → X be bijective and A ⊆ X.

(i) T (A) = A if and only if T−1(A) = A.

(ii) If T (A) = A, then T n(A) = A for all n ∈ Z.
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A.1 Symmetric difference

The symmetric difference of two sets A and B is defined by

A∆B = (A \B) ∪ (B \ A). (A.3)

We have obviously that A∆B = B∆A and A∆B ⊆ A ∪B.

Proposition A.1.1. (i) A∆B = (X \ A)∆(X \B)

(ii) A∆B = (A∆C)∆(B∆C).

(iii) A∆B ⊆ (A∆C) ∪ (B∆C)

Proof. (i) (X \ A) \ (X \B) = B \ A and similarly.

(ii) See [68, p.17]

(iii) A∆B = (A∆C)∆(B∆C) ⊆ (A∆C) ∪ (B∆C).

A.2 Collections of sets

In the sequel, X is a nonempty set and C is a collection of subsets of X.

Definition A.2.1. C is said to cover X, or to be a cover or a covering of X, if every
point in X is in one of the sets of C, i.e. X =

⋃
C.

Given any cover C of X, a subcover of C is a subset of C that is still a cover of X.

Definition A.2.2. C is said to have the finite intersection property if for every finite
subcollection {C1, . . . , Cn} of C, the intersection C1 ∩ . . . ∩ Cn is nonempty.

Remark A.2.3. If X has a finite cover X =
n⋃
i=1

Ai, then we can always construct a cover

X =
n⋃
i=1

Bi of X such that m ≤ n, Bi ⊆ Ai, and Bi ∩ Bj = ∅ for all i 6= j. Just take

Bi := Ai \
⋃
j 6=i

Aj.

For any nonempty subset A of X, we denote

C ∩ A = {C ∩ A | C ∈ C}. (A.4)
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A.2.1 Sequences of sets

Let X be a nonempty set and (En)n≥1 be a sequence of subsets of X.

Definition A.2.4. (i) The limit superior of (En) is defined by

lim sup
n→∞

En :=
⋂
n≥1

⋃
i≥n

Ei. (A.5)

(ii) The limit inferior of (En) is defined by

lim inf
n→∞

En :=
⋃
n≥1

⋂
i≥n

Ei. (A.6)

Alternative names are superior (inferior) limit or upper (lower) limit.

Definition A.2.5. If lim sup
n→∞

En = lim inf
n→∞

En, we say that the sequence (En)≥1 converges

to the set lim
n→∞

En := lim sup
n→∞

En = lim inf
n→∞

En and call lim
n→∞

En its limit.

Definition A.2.6. The sequence (En)n≥1 is said to be

(i) increasing if En ⊆ En+1 for each n;

(ii) decreasing if En ⊇ En+1 for each n;

(iii) monotone if it is either decreasing or increasing.

Proposition A.2.7. (i) lim sup
n→∞

En is the set of those elements which are in En for

infinitely many n.

(ii) lim inf
n→∞

En is the set of those elements which are in all but a finite number of the sets

En.

(iii) lim inf
n→∞

En ⊆ lim sup
n→∞

En.

(iv) If (En) is increasing, then lim
n→∞

En =
⋃
n≥1

En.

(v) If (En) is decreasing, then lim
n→∞

En =
⋂
n≥1

En.

(vi) If E1, E2, . . . are pairwise disjoint, then lim
n→∞

En = ∅.

Proof. See [116, Claim 1, p.43].
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Proposition A.2.8. Let (En)n≥1 be a sequence of subsets of X and f : X → R. Then

lim
n→∞

χ∪ni=1Ei
f = χ∪i≥1Eif (A.7)

Proof. Let

Bn :=
n⋃
i=1

Ei, B :=
∞⋃
i=1

Ei, gn := χBnf, g := χBf.

Let x ∈ X. We have two cases:

(i) x ∈ B. Then g(x) = f(x) and there exists N ≥ 1 such that x ∈ EN . It follows
that x ∈ Bn for all n ≥ N , hence gn(x) = f(x) for all n ≥ N . In particular,
lim
n→∞

gn(x) = f(x) = g(x).

(ii) x ∈/B. Then g(x) = 0 and x ∈/En for any n ≥ 1. It follows that x ∈/Bn for any
n ≥ 1, hence gn(x) = 0 for all n ≥ 1. In particular, lim

n→∞
gn(x) = 0 = g(x).

A.2.2 Monotone classes

Definition A.2.9. A nonempty collection M of subsets of a set X is called a monotone
class if for every monotone sequence (En)n≥1,

En ∈M for all n implies lim
n→∞

En ∈M.

Since the intersection of any family of monotone classes is a monotone class, we can
speak of the monotone clas generated by any given collection of subsets of X.



Appendix B

Topology

In the sequel, spaces X, Y, Z are nonempty topological spaces.

Definition B.0.10. A point x in X is said to be an isolated point of X if the one-point
set {x} is open in X.

Definition B.0.11. Let X, Y be topological spaces and f : X → Y .

(i) f is said to be an open map if for each open set U of X, the set f(U) is open in Y .

(ii) f is said to be a closed map if for each closed set F of X, the set f(F ) is closed in
Y .

B.1 Closure, interior and related

Let A be a subset of X.

Definition B.1.1. The closure of A, denoted by A, is defined as the intersection of all
closed subsets of X that contain A.

Definition B.1.2. The interior of A, denoted by A◦, is the union of all open subsets of
X that are contained in A.

Proposition B.1.3. (i) If U is an open set that intersects A, then U must intersect A.

(ii) If X is a Hausdorff space without isolated points, then given any nonempty open set
U of X and any finite subset S of X, there exists a nonempty open set V contained
in U such that S ∩ V = ∅.

Proof. See [79, proof of Theorem 27.7, p.176].

Definition B.1.4. A subset A of X is dense in X if A = X.

Proposition B.1.5. Let A ⊆ X. The following are equivalent:

79
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(i) A is dense in X.

(ii) A meets every nonempty open subset of X.

(iii) A meets every nonempty basis open subset of X.

(iv) the complement of A has empty interior.

Definition B.1.6. A subset A of a topological space X is called nowhere dense if its
closure A has empty interior.

Hence, a closed subset is nowhere dense if and only if it has nonempty interior.

B.2 Hausdorff spaces

Definition B.2.1. X is said to be Hausdorff if for each pair x, y of distinct points of X,
there exist disjoint open sets containing x and y, respectively.

Proposition B.2.2. (i) Every finite subset of a Hausdorff topological space is closed.

(ii) Any subspace of a Hausdorff space is Hausdorff.

Proof. (i) See [79, Theorem 17.8, p.99].

(ii) See [70, Proposition 3.4, p.41-42].

(iii) See [79, Ex. 13, p.101].

B.3 Bases and subbases

Definition B.3.1. Let X be a set. A basis (for a topology) on X is a collection B of
subsets of X (called basis elements) satisfying the following conditions:

(i) Every element is in some basis element; in other words, X =
⋃
B∈B B.

(ii) If B1, B2 ∈ B and x ∈ B1 ∩ B2, there exists a basis element B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩B2.

Let B be basis on a set X, and define

T := the collection of all unions of elements of B.

Then T is a topology on X, called the topology generated by B. We also say that B is
a basis for T .

Another way of describing the topology generated by a basis is given in the following.
Given a set X and a collection B of subsets of X, we say that a subset U ⊆ X satisfies
the basis criterion with respect to B if for every x ∈ U , there exists B ∈ B such that
x ∈ B ⊆ U .
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Proposition B.3.2. Let B be a basis on a set X and T be the topology generated by B.
Then T is precisely the collection of all subsets of X that satisfy the basis criterion with
respect to B.

Proof. See [70, Lemma 2.10, p.27-28].

Proposition B.3.3. Suppose X is a topological space, and B is a collection of open subsets
of X. If every open subset of X satisfies the basis criterion with respect to B, then B is a
basis for the topology of X.

Proof. See [70, Lemma 2.11, p.29].

Definition B.3.4. A subbasis (for a topology) on X is a collection of subsets of X whose
union equals X. The topology generated by the subbasis S is defined to be the
collection T of all unions of finite intersections of elements of S.

If S is a subbasis on X and B is the collection of all finite intersections of elements of
S, then B is a basis on X and T is the topology generated by B.

B.4 Continuous functions

A function f : X → Y is said to be continuous if for each open subset V of Y , the set
f−1(V ) is open in X.

Remark B.4.1. If the topology of Y is given by a basis (resp. a subbasis), then to prove
continuity of f it suffices to show that the inverse image of every basis element (resp.
subbasis element) is open.

Proof. See [79, p.103].

Proposition B.4.2. Let f : X → Y . The following are equivalent

(i) f is continuous.

(ii) For every closed subset B of Y , the set f−1(B) is closed in X.

(iii) For every subset A of X, f(A) ⊆ f(A).

(iv) For each x ∈ X and each open neighborhood V of f(x), there is an open neighborhood
U of x such that f(U) ⊆ V .

Proof. See [79, Theorem 18.1, p.104].

Proposition B.4.3. Let X, Y, Z be topological spaces.

(i) (Inclusion) If A is a subspace of X, then the inclusion function j : A → X is
continuous.
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(ii) (Composition) If f : X → Y and g : Y → Z are continuous, then the map g ◦ f is
continuous.

(iii) (Restricting the domain) If f : X → Y is continuous and A is a subspace of X, then
the restricted function f |A: A→ Y is continuous.

(iv) (Restricting or expanding the range) Let f : X → Y be continuous. If Z is a subspace
of Y , containing the image set f(X) of f , then the function g : X → Z obtained by
restricting the range of f is continuous. If Z is a space having Y as a subspace, then
the function h : X → Z, obtained by expanding the range of f is continuous.

(v) (Local formulation of continuity) The map f : X → Y is continuous if X can be
written as the union of open sets Ui(i ∈ I) such that f |Ui is continuous for each
i ∈ I.

Proof. See [79, Theorem 18.2, p.108].

B.4.1 Homeomorphisms

Definition B.4.4. A mapping f : X → Y is called a homeomorphism if f is bijective
and both f and its inverse f−1 are continuous.

If f : X → X is a homeomorphism, then fn : X → X is also a homeomorphism for all
n ∈ Z.

Definition B.4.5. A continuous map f : X → Y is a local homeomorphism if every
point x ∈ X has a neighborhood U ⊆ X such that f(U) is an open subset of Y and
f |U : U → f(U) is a homeomorphism.

Proposition B.4.6. Let f : X → Y be bijective. The following properties of f are
equivalent

(i) f is a homeomorphism.

(ii) f is continuous and open.

(iii) f is continuous and closed.

(iv) f(A) = f(A) for each A ⊆ X.

(v) f is a local homeomorphism.

Proof. See [26, Theorem 12.2, p.89] and [70, Ex. 2.8.(d), p.24].

Proposition B.4.7. Every local homeomorphism is an open map.

Proof. See [70, Ex. 2.8.(a), p.24].
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B.5 Metric topology and metrizable spaces

Let (X, d) be a metric space. Given x ∈ X and r > 0,

Br(x) = {y ∈ X | d(x, y) < r} is the open ball with center x and radius r, while

Br(x) = {y ∈ X | d(x, y) ≤ r} is the open ball with center x and radius r.

Proposition B.5.1. The collection

B := {Br(x) | x ∈ X, r > 0}

is a basis for a topology on X.

Proof. See [79, p.119].

The topology generated by B is called the metric topology (induced by d).

Remark B.5.2. It is easy to see that the set {B2−k(x) | x ∈ X, k ∈ N} is also a basis for
the metric topolgy.

Example B.5.3. (i) Let X be a discrete metric space. Then the induced metric topol-
ogy is the discrete topology.

(ii) Let (R, d) be the set of real numbers with the natural metric d(x, y) = |x− y|. Then
the induced metric topology is the standard topology on R.

(iii) Let (C, d) be the set of complex numbers with the natural metric d(z1, z2) = |z1−z2|.

(iv) Let Rn(n ≥ 1) and define the euclidean metric on Rn by

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2

for all x = (x1, x2 . . . , xn), y = (y1, y2 . . . , yn).

The metric space (Rn, d) is called the euclidean n-space.

Definition B.5.4. Let (X, d) be a metric space and ∅ 6= A ⊆ X.

(i) A is said to be bounded if there exists M ≥ 0 such that d(x, y) ≤M for all x, y ∈ A.

(ii) If A is bounded, the diameter of A is defined by

diam(A) = sup{d(x, y) | x, y ∈ A}. (B.1)

Let (X, d) be a metric space. Define

d : X ×X → [0,∞), d(x, y) = min{d(x, y), 1} (B.2)

Proposition B.5.5. d is a metric on X that induces the same topology as d.
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Proof. See [79, Theorem 20.1, p.121].

The metric d is called the standard bounded metric corresponding to d. Thus,
(X, d) is bounded.

Definition B.5.6. If X is a topological space, X is said to be metrizable if there exists
a metric d on X that induces the topology of X.

Thus, a metric space is a metrizable topological space together with a specific metric d
that gives the topology of X.

Proposition B.5.7. Let X be a metrizable space.

(i) X is Hausdorff.

(ii) If A ⊆ X and x ∈ X, then x ∈ A if and only if there is a sequence of points of A
converging to x.

Proof. (i) is easy to see.

(ii) See [79, Lemma 21.2, p.129-130].

Proposition B.5.8 (Continuity). Let f : X → Y ; let X and Y be metrizable with metrics
dX and dY . The following are equivalent

(i) f is continuous.

(ii) Given x ∈ X and given ε > 0 there exists δ > 0 such that for all y ∈ X,

dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε.

(iii) Given x ∈ X, for every sequence (xn) in X,

lim
n→∞

xn = x ⇒ lim
n→∞

f(xn) = f(x).

B.6 Disjoint unions

Let X, Y be topological spaces. Consider the disjoint union X t Y of the sets X, Y .
Thus, the points in X t Y are given by taking all the points of X together with all the
points of Y , and thinking of all these points as being distinct. So if the sets X and Y
overlap, then each point in the intersection occurs twice in the disjoint union X t Y . We
can therefore think of X as a subset of X tY and we can think of Y as a subset of X tY ,
and these two subsets do not intersect.

Define a topology on X t Y by

T = {A ∪B | A open in X, B open in Y }.

It is easy to see that both X and Y are clopen subsets of X t Y .
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Remark B.6.1. Formally, X t Y = {(x, 1) | x ∈ X} ∪ {(y, 2) | y ∈ Y }, j1 : X →
X tY, j1(x) = (x, 1) and j2 : Y → X tY, j2(y) = (y, 2) are the canonical embeddings, and

T = {j1(A) ∪ j2(B) | A open in X, B open in Y }.

Proposition B.6.2. (i) X tY is Hausdorff if and only if both X and Y are Hausdorff.

(ii) For any topological space Z, a map f : X t Y → Z is continuous if and only if its
components f1 : X → Z, f2 : Y → Z are continuous.

Proof. See [23, Theorems 5.31, 5.35, 5.36, p.68-70].

B.7 Product topology

Let (Xi)i∈I be an indexed family of nonempty topological spaces and πi :
∏

i∈I Xi → Xi

be the projections.

Definition B.7.1. The product topology is the smallest topology on
∏

i∈I Xi for which
all the projections πi (i ∈ I) are continuous. In this topology,

∏
i∈I Xi is called a product

space.

Let us define, for i ∈ I

Si := {π−1
i (U) | U is open in Xi}

=

{∏
j∈I

Uj | Ui is open in Xi and Uj = Xj for j 6= i

}
and let S denote the union of these collections,

S :=
⋃
i∈I

Si. (B.3)

Then S is a subbasis for the product topology on
∏

i∈I Xi.
Furthermore, if we define

B :=

{∏
i∈I

Ui | Ui is open in Xi for each i ∈ I and Ui = Xi

for all but finitely many values of i ∈ I
}
,

then B is the basis generated by S for the product topology .

Proposition B.7.2. (i) Suppose that the topology on each space Xi is given by a basis

Bi. Then the collection B :=

{∏
i∈I Bi | Bi ∈ Bi for finitely many indices i ∈ I and

Bi = Xi for the remaining indices

}
is a basis for the product topology.
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(ii) Suppose that the topology on each space Xi is given by a subbasis Ci. Then the

collection C :=
⋃
i∈I

{π−1
i (U) | U ∈ Ci} is a subbasis for the product topology.

Proof. (i) See [79, Theorem 19.2, p.116].

(ii) See [26, 1.2, p.99].

Proposition B.7.3.

(i) For any topological space Y , a map f : Y →
∏

i∈I Xi is continuous if and only if each
of its components fi : Y → Xi, fi = πi ◦ f is continuous.

(ii) If each Xi is Hausdorff, then
∏

i∈I Xi is Hausdorff.

(iii) Let (xn) be a sequence in
∏

i∈I Xi and x ∈
∏

i∈I Xi. Then lim
n→∞

xn = x if and only if

lim
n→∞

xni = xi for all i ∈ I, where xni := πi(x
n), xi := πi(x).

Proof. (i) See [79, Theorem 19.6, p.117].

(ii) See [79, Theorem 19.4, p.116].

(iii) See [79, Exercise 6, p.118].

Proposition B.7.4. Let (fi : Xi → Yi)i∈I be a family of functions and∏
i∈I

fi :
∏
i∈I

Xi →
∏
i∈I

Yi,
∏
i∈I

fi((xi)i∈I) = (fi(xi))i∈I

be the product function. If each fi is continuous (resp. a homeomorphism), then
∏

i∈I fi is
continuous (resp. a homeomorphism).

Proof. See [26, Theorem 2.5, p.102].

B.7.1 Metric spaces

Proposition B.7.5. Let (X1, d1), . . . , (Xn, dn) be metric spaces. Then

d :
n∏
i=1

Xi ×
n∏
i=1

Xi → [0,∞), d(x, y) := max
i=1,...,n

di(xi, yi) (B.4)

is a metric that induces the product topology on
n∏
i=1

Xi.

Proof. See [79, Ex 3, p. 133].

Proposition B.7.6. Any countable product of metric spaces is metrizable.

Proof. See, for example, [60, Theorem 14, p. 122].
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B.8 Quotient topology

Definition B.8.1. Let X and Y be topological spaces and p : X → Y be a surjective map.
The map p is said to be a quotient map provided a subset U of Y is open if and only if
p−1(U) is open.

The condition is stronger than continuity; some mathematicians call it ”strong conti-
nuity”. An equivalent condition is to require that a subset F of Y is closed if and only if
p−1(F ) is closed.

Now we show that the notion of quotient map can be used to construct a topology on
a set.

Definition B.8.2. Let X be a topological space, Y be any set and p : X → Y be a surjective
map. There is exactly one topology Q on X relative to which p is a quotient map; it is
called the quotient topology induced by p.

The topology Q is of course defined by

Q := {U ⊆ Y | p−1(U) is open in X}. (B.5)

It is easy to check that Q is a topology. Furthermore, the quotient topology is the largest
topology on Y for which p is continuous

Proposition B.8.3. If p : X → Y is a surjective continuous map that is either open or
closed, then p is a quotient map.

Proposition B.8.4 (Characteristic property of quotient maps).
Let X and Y be topological spaces and p : X → Y be a surjective map. The following are
equivalent:

(i) p is a quotient map;

(ii) for any topological space Z and any map f : Y → Z, f is continuous if and only if
the composite map f ◦ p is continuous:

X

Y

p

?

f
- Z.

f◦p

-

Proof. See [70, Theorem 3.29, p.56] and [70, Theorem 3.31, p.57].
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Proposition B.8.5 (Uniqueness of quotient spaces).
Suppose p1 : X → Y1 and p2 : X → Y2 are quotient maps that make the same identifications
(i.e., p1(x) = p1(z) if and only if p2(x) = p2(z)). Then there is a unique homeomorphism
ϕ : Y1 → Y2 such that ϕ ◦ p1 = p2.

X

Y1

p1

?

!ϕ
- Y2.

p
2

-

Proof. See [70, Corollary 3.32, p.57-58].

Proposition B.8.6. (Passing to the quotient) Suppose p : X → Y is a quotient map,
Z is a topological space and f : X → Z is a map that is constant on the fibers of p (i.e.
p(x) = p(z) implies f(x) = f(z)). Then there exists a unique map f̃ : Y → Z such that
f = f̃ ◦ p.

The induced map f̃ is continuous if and only if f is continuous; f̃ is a quotient map if
and only if f is a quotient map.

X

Y

p

?

!f̃

- Z.

f

-

Proof. [70, Corollary 3.30, p.56], [79, Theorem 22.2, p.142].

The most common source of quotient maps is the following construction. Let ≡ be an
equivalence relation on a topological space X. For each x ∈ X let [x] denote the equivalence
class of x, and let X/ ≡ denote the set of equivalence classes. Let π : X → X/ ≡ be the
natural projection sending each element of X to its equivalence class. Then X/ ≡ together
with the quotient topology induced by π is called the quotient space of X modulo ≡.

One can think of X/ ≡ as having been obtained by ”identifying” each pair of equivalent
points. For this reason, the quotient space X/ ≡ is often called an identification space,
or a decomposition space of X.

We can describe the topology of X/ ≡ in another way. A subset U of X/ ≡ is a
collection of equivalence classes, and the set p−1(U) is just the union of the equivalence
classes belonging to U . Thus, the typical open set of X/ ≡ is a collection of equivalence
classes whose union is an open set of X.

Any equivalence relation on X determines a partition of X, that is a decomposition of
X into a collection of disjoint subsets whose union is X. Hence, alternatively, a quotient
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space can be defined by explicitly giving a partition of X. Thus, let X? be a partition of
X into and π : X → X? be the surjective map that carries each point of X to the unique
element of X? containing it. Then X? together with the quotient topology induced by π
is called also a quotient space of X.

Whether a given quotient space is defined in terms of an equivalence relation or a
partition is a matter of convenience.

B.9 Complete regularity

Definition B.9.1. [79, p. 211]
A topological space X is completely regular if it satisfies the following:

(i) One-point sets are closed in X.

(ii) For each point x0 ∈ X and each closed set A not containing x0, there is a continuous
function f : X → [0, 1] such that f(x0) = 1 and f(A) = {0}.

B.10 Compactness

Definition B.10.1. An open cover of X is a collection of open sets that cover X.

Definition B.10.2. A topological space X is said to be compact if every open cover A
of X contains a finite subcover of X.

Proposition B.10.3 (Equivalent characterizations).
Let X be a topological space. The following are equivalent:

(i) X is compact.

(ii) For every collection C of nonempty closed sets in X having the finite intersection
property, the intersection

⋂
C of all the elements of C is nonempty.

Proof. See [79, Theorem 26.9, p.169].

Corollary B.10.4. If C is a chain (i.e. totally ordered by inclusion) of nonempty closed
subsets of a compact space X, then the intersection

⋂
C is nonempty.

Proof. It is easy to see that C has the finite intersection property.

As an immediate consequence, we get

Corollary B.10.5. If (Cn)n≥0 is a decreasing sequence of nonempty closed subsets of a

compact space X, then the intersection
⋂
n≥0

Cn is nonempty.

Proposition B.10.6.
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(i) Any finite topological space is compact.

(ii) Every closed subspace of a compact space is compact.

(iii) Every compact subspace of a Hausdorff space is closed.

(iv) The product of finitely many compact spaces is compact.

(v) X t Y is a compact space if and only if both X and Y are compact spaces.

(vi) The image of a compact space under a continuous map is compact.

Proof. (i) Obviously.

(ii) See [79, Theorem 26.2, p.165].

(iii) See [79, Theorem 26.3, p.165].

(iv) See [79, Theorem 26.7, p.167].

(v) See [79, Exercise 3, p.171].

(vi) See [79, Theorem 26.5, p.166].

Proposition B.10.7. Let X be a compact space.

(i) If x ∈ X and U is an open neighborhood of x, then there exists an open neighborhood
V of x such that V ⊆ U .

Proposition B.10.8. Let X be a compact space. Then for any disjoint open cover (Ui)i∈I
of X we have that Ui 6= ∅ for a finite number of i. In particular, if (Un)n≥1 is a countable
disjoint open cover of X, then there exists N ≥ 1 such that Un = ∅ for all n ≥ N .

Proof. Let (Ui)i∈I be a disjoint cover of X. Since X is compact, we have that X =
Ui1 ∪ . . . Uin for some i1, . . . , in ∈ I. Let i ∈/ {i1, . . . , in}. Since Ui ∩ Uik = ∅ for all
k = 1, . . . , n, it follows that Ui ∩X = ∅, hence we must have Ui = ∅.
Theorem B.10.9 (Tychonoff Theorem).
An arbitrary product of compact spaces is compact in the product topology.

Proof. See [79, Theorem 37.3, p.234].

Theorem B.10.10 (Heine-Borel Theorem).
A subspace A of the euclidean space Rn is compact if and only if it is closed and bounded.

Proof. See [79, Theorem 27.3, p.173].

Theorem B.10.11. Let X be a compact Hausdorff space. The following are equivalent:

(i) X is metrizable.

(ii) X is second-countable, that is X has a countable basis for its topology.

Proof. See [79, Ex. 3, p.218].
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B.10.1 Sequential compactness

Definition B.10.12. A topological space X is sequentially compact if every sequence
of points of X has a convergent subsequence.

Proposition B.10.13. If X is metrizable, then X is compact if and only if it is sequentially
compact.

Proof. See [79, Theorem 28.2, p.179].

B.10.2 Total boundedness

Definition B.10.14. A metric space (X, d) is said to be totally bounded if for every
ε > 0 there is a finite cover of X by ε-balls.

Proposition B.10.15. A metric space (X, d) is compact if and only if it is complete and
totally bounded.

Proof. See [79, Theorem 45.1, p.276].

B.10.3 Stone-Čech compactification

Definition B.10.16. A compactification of a topological space X is a compact Haus-
dorff space Y containing X as a subspace such that X = Y . Two compactifications Y1 and
Y2 of X are said to be equivalent if there is a homeomorphism h : Y1 → Y2 such that
h(x) = x for every x ∈ X.

Proposition B.10.17. Let X be a completely regular space. There exists a compactifica-
tion βX of X having the following properties:

(i) βX satisfies the following extension property: Given any continuous map f :
X → C of X into a compact Hausdorff space C, the map f extends uniquely to a
continuous map f̃ : βX → C.

(ii) Any other compactification Y of X satisfying the extension property is equivalent with
βX.

Proof. See [79, Theorem 38.4, p.240] and [79, Theorem 38.5, p.240].

βX is called the Stone-Čech compactification of X.

Proposition B.10.18. Let X and Y be completely regular spaces. Then any continuous
mapping f : X → Y extends uniquely to a continuous function βf : βX → βY .
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B.10.4 Locally compact spaces

Definition B.10.19. A topological space is said to be locally compact if every point has
a compact neighborhood.

Proposition B.10.20. Let X be a Hausdorff topological space. The following are equiva-
lent

(i) X is locally compact.

(ii) every point has a relatively compact neighbourhood.

B.10.5 σ-compact spaces

Definition B.10.21. A topological space is said to be σ-compact if it is the union of
countably many compact subspaces.

B.10.6 σ-compact spaces

Definition B.10.22. A topological space is said to be σ-locally compact if it is σ-compact
an locally compact.

B.11 Baire category

Definition B.11.1. [103, 20.6, p. 532] Let X be a topological space. A set A ⊆ X is
meager, or of the first category of Baire, if it is the union of countably many nowhere
dense sets.

A set that is not meager is called nonmeager, or of the second category of Baire.

Thus, every set is either of first or second category.

Definition B.11.2. [103, 20.6, p. 532] A set A is residual (or comeager or generic)
if X \ A is meager.

Lemma B.11.3. Let X be a topological space.

(i) A is meager iff A is contained in the union of countably many closed sets having
empty interiors.

(ii) A is residual iff A contains the intersection of countably many open dense sets.

Definition B.11.4. A topological space X is said to be a Baire space if the following
condition holds:

Given any countable collection (Fn)n≥1 of closed sets each of which has empty interior,
their union

⋃
n≥1 Fn has empty interior.
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Proposition B.11.5 (Equivalent characterizations). Let X be a topological space. The
following are equivalent:

(i) X is a Baire space.

(ii) Given any countable collection (Gn)n≥1 of open dense subsets of X, their intersection⋂
n≥1Gn is also dense in X.

(iii) Any residual subset of X is dense in X.

(iv) Any meager subset of X has empty interior.

(v) Any nonempty open subset of X is nonmeager.

Proof. See [103, 20.15, p. 537].

An immediate consequence of Proposition B.11.5.(iii) is the following

Corollary B.11.6. Any residual subset of a Baire space is nonempty.

We may think of the meager sets as ”small” and the residual sets as ”large”. Although
”large” is a stronger property than ”nonempty”, in some situations the most conveninet
way to prove that some set A is nonempty is by showing the set is ”large”. That is one
way in which the above corollary is used.

The most important result about Baire spaces is

Theorem B.11.7 (Baire Category Theorem). If X is a compact Hausdorff space or a
complete metric space, then X is a Baire space.

Proof. See [79, Theorem 48.2, p. 296].

B.12 Covering maps

Definition B.12.1. Let p : Y → Y be a continuous surjective map. The open set U of
Y is said to be evenly covered by p if the inverse image p−1(U) can be written as the
union of disjoint open sets Vα in X such that for each α, the restriction of p to Vα is a
homeomorphism of Vα onto U . The collection (Vα) will be called a partition of p−1(U) into
slices.

Definition B.12.2. Let p : Y → Y be a continuous surjective map. If every point of Y
has an open neighborhood U that is evenly covered by p. then p is called a covering map,
and Y is said to be a covering space of X.

Lemma B.12.3. Any covering map is a local homeomorphism, but the converse does not
hold.

Proof. See [79, Example 2, p.338].
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Proposition B.12.4. The map

ε : R→ S1, ε(t) = e2πit. (B.6)

is a covering map.

Proof. See [79, Theorem 53.3, p.339] or [70, Lemma 8.5, p.183].



Appendix C

Measure Theory

C.1 Set systems

C.1.1 Semirings

Definition C.1.1. A collection S of subsets of X is called a semiring on/over X if

(i) ∅ ∈ S.

(ii) If A,B ∈ S, then A ∩B ∈ S.

(iii) If A,B ∈ S, A ⊆ B, then there exist disjoint C1, . . . , Cn ∈ S such that B \ A =
C1 ∪ . . . ∪ Cn.

C.1.2 Algebras and semialgebras

Definition C.1.2. A collection S of subsets of X is called a semialgebra on X if

(i) ∅ ∈ S.

(ii) If A,B ∈ S, then A ∩B ∈ S.

(iii) If A ∈ S, then there exist pairwise disjoint subsets C1, . . . , Cn ∈ S such that X \A =
C1 ∪ . . . ∪ Cn.

Lemma C.1.3. Any semialgebra is a semiring.

Proof. Let S be a semialgebra and A,B ∈ S, A ⊆ B. There are then C1, . . . , Cn pairwise
disjoint such that X \ A = C1 ∪ . . . ∪ Cn. It follows that

B \ A = B ∩ (X \ A) = B ∩ (C1 ∪ . . . ∪ Cn) = (B ∩ C1) ∪ . . . (B ∩ Cn).

95
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Definition C.1.4. A collection A of subsets of X is called an algebra or a field on X
if

(i) X ∈ A.

(ii) If A,B ∈ A, then A ∪B ∈ A.

(iii) If A ∈ A, then X \ A ∈ A.

The intersection of any family of algebras on a set X is again an algebra on X.

Definition C.1.5. Let C be a collection of subsets of X. The algebra generated by C
on X, denoted by A(C), is the intersection of all algebras in X containing C.

Proposition C.1.6. Let C be a collection of subsets of X. Then

A(C) = the class of sets of the form
m⋃
i=1

ni⋂
j=1

Aij, (C.1)

where for each (i, j) pair either Aij or X \ Aij is in C, and where
⋂n1

j=1A1j, . . . ,
⋂nm
j=1Amj

are pairwise disjoint.

Proof. See [116, Ex. 10, p.13].

Proposition C.1.7. Let S be a semialgebra on X. Then

A(S) = the class of sets of the form
m⋃
i=1

Ai, (C.2)

where each Ai ∈ S and A1, . . . , Am are pairwise disjoint.

Proof. See [120, Theorem 0.1, p.4]

Proposition C.1.8. Let C be a collection of subsets of X. For any nonempty subset B of
X,

A(C) ∩B = AB(C ∩B),

where AB(C ∩B) denotes the algebra generated by C ∩B in B.

Proof.
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C.2 σ-algebras

Definition C.2.1. A collection B of subsets of X is said to be a σ-algebra on X if

(i) X ∈ B.

(ii) If A ∈ B, then X \ A ∈ B.

(iii) If (An)n≥1 is a sequence in B, then
⋃∞
n=1An ∈ B.

The pair (X,B) is called a measurable space, and the sets in B are called the measur-
able sets.

Proposition C.2.2. Let B be a σ-algebra on X.

(i) If A1, . . . , An ∈ B, then
n⋃
k=1

Ak,
n⋂
k=1

Ak ∈ B.

(ii) If A,B ∈ B, then A \B ∈ B.

(iii) If (An)n≥1 is a sequence of sets in B, then

(a)
⋂
n≥1

An ∈ B.

(b) lim sup
n→∞

An, lim inf
n→∞

An ∈ B. In particular, if lim
n→∞

An exists, then lim
n→∞

An ∈ B.

Proof. See [116, Section 1.3, p.9].

Thus σ-algebras are closed under the application of countably many of the standard
set manipulations. The standard set operations are union, intersection, complementation,
difference, and symmetric difference, and all of these can be expressed in terms of unions
and complements. Thus, when one works with a collection of sets in a σ-algebra, one will
never by using at most countably many set operations on these sets produce a set outside
the σ-algebra.

C.2.1 Generated σ-algebras

Proposition C.2.3. If (Bi)i∈I is a family of σ-algebras on X, then
⋂
i∈I Bi is a σ-algebra

on X.

Definition C.2.4. Let C be a collection of subsets of a set X. The σ-algebra generated
by C on X, denoted by σ(C), is the intersection of all algebras in X containing C.

Proposition C.2.5. Let C be a collection of subsets of X. Then

(i) If C ⊆ D ⊆ σ(C), then σ(D) = σ(C).
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(ii) If C is finite, then σ(C) = A(C).

(iii) σ(C) = σ(A(C)).

(iv) For any nonempty subset B of X,

σ(C) ∩B = σB(C ∩B),

where σB(C ∩B) denotes the σ-algebra generated by C ∩B in B.

Proof. See [116, Ex. 9, p.13] and [116, Ex. 17, p.14].

The following result is called Halmos Monotone Class theorem and is very useful.

Proposition C.2.6. Let A be an algebra on X. Then σ(A) coincides with the monotone
class generated by A. Hence, if a monotone class contains A, then it contains σ(A).

Proof. See [116, Ex. 21, p.14-15] or [51, Theorem B. p.27].

C.3 Set functions

A set function is a function defined on a nonempty collection of sets. In the sequel, C is
a collection of sets containing the empty set ∅ and µ : C → [0,∞].

Definition C.3.1. (i) µ is called finitely additive if µ(∅) = 0 and

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai) (C.3)

for all n ≥ 1 and all pairwise disjoint sets A1, . . . , An ∈ C such that
n⋃
i=1

Ai ∈ C.

(ii) µ is called finitely subadditive if

µ

(
n⋃
i=1

Ai

)
≤

n∑
i=1

µ(Ai) (C.4)

for all n ≥ 1 and all sets A1, . . . , An ∈ C such that
n⋃
i=1

Ai ∈ C.

(iii) µ is called countably additive if µ(∅) = 0 and

µ

(⋃
n≥1

An

)
=
∑
n≥1

µ(An) (C.5)

for all sequences (An)n≥1 of pairwise disjoint sets in C such that
⋃
n≥1

An ∈ C.
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(iv) µ is called countably subadditive if

µ

(⋃
n≥1

An

)
≤
∑
n≥1

µ(An) (C.6)

for all sequences (An)n≥1 in C such that
⋃
n≥1

An ∈ C.

Definition C.3.2. µ is σ-finite if there exists a sequence (An)n≥1 of members of C such
that X =

⋃
n≥1An and µ(An) <∞ for all n ≥ 1.

C.4 Measure spaces

Definition C.4.1. Let (X,B) be a measurable space. A measure on B is a countably
additive set function µ : B → [0,∞].

Definition C.4.2. A measure space is a triple (X,B, µ), where (X,B) is a measurable
space and µ is a measure on B.

Definition C.4.3. Let (X,B, µ) be a measure space.

(i) If µ is σ-finite, then (X,B, µ) is called a σ-finite measure space.

(ii) µ is finite if µ(X) <∞. In this case, (X,B, µ) is called a finite measure space.

(iii) µ is a probability measure if µ(X) = 1. In this case, (X,B, µ) is called a proba-
bility space.

Proposition C.4.4. Let (X,B, µ) be a measure space, and A,B ∈ B.

(i) µ is finitely additive.

(ii) A ⊆ B implies µ(A) ≤ µ(B). Furthermore, if µ(A) < ∞ or µ(B) < ∞, then
µ(B \ A) = µ(B)− µ(A).

(iii) µ is countably subadditive and finitely subadditive.

(iv) µ(A∆B) = 0 if and only if µ(A) = µ(B) = µ(A ∩B).

(v) µ(A∆B) = 0 implies µ(A) = µ(B) and µ(X \ A) = µ(X \B).

(vi) µ(A∆B) ≤ µ(A∆C) + µ(B∆C)

(vii) If µ(A) = 0, then µ(A ∪B) = µ(B), µ(A∆B) = 0 and µ(B \ A) = µ(B).

Proof. (i) See [116, (M4), p.37].
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(ii) See [116, (M5), p.38].

(iii) See [116, (M7), p.40].

(iv) See [116, Ex. 10(b), p.41].

(v) By A.1.1.(i) we have that µ((X \ A)∆(X \ B)) = µ(A∆B) = 0. Apply now twice
(iv).

(vi) By A.1.1.(iii), we have that µ(A∆B) ≤ µ((A∆C) ∪ (B∆C)) ≤ µ(A∆C) + µ(B∆C).

(vii) See [116, Ex. 10(c),(d), p.41].

Proposition C.4.5. Let (X,B, µ) be a finite measure space.

(i) For every sequence (An)n≥1 in B such that lim
n→∞

An exists, we have that µ
(

lim
n→∞

An

)
=

lim
n→∞

µ(An).

(ii) For every n ≥ 1 and A1, . . . , An ∈ B,

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai)−
∑

1≤i<j≤n

µ(Ai ∩ Aj) +
∑

1≤i<j<k≤n

µ(Ai ∩ Aj ∩ Ak) + . . .+

+(−1)n+1µ

(
n⋂
i=1

)

(iii) For all A,B ∈ B, µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

(iv) Assume that n ≥ 1 and A1, . . . , An ∈ B are such that µ(Ai ∩ Aj) = 0 for all 1 ≤ i <

j ≤ n. Then µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai).

Proof. (i) See [116, (M12), p.48].

(ii) See [116, (M6), p.48].

(iii) Apply (ii) with n = 2.

(iv) It is an immediate application of (ii).
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C.4.1 Dirac probability measure

Let (X,B) be a measurable space. Each x ∈ X defines a measure δx : B → [0, 1] by

δx(A) =

{
1 if x ∈ A
0 if x /∈ A

The measure δx is called the Dirac probability measure on X defined by x ∈ X.

C.5 Countable products of probability spaces

Let (Xn,Bn, µn), n ∈ Z be probability spaces. Their direct product is defined as follows.

Let X =
∏
n∈Z

Xn. We shall denote with boldface letters x = (xn)n∈Z,y, z, . . . the

elements of X. For every n ∈ Z, let

πn : X → Xn, πn(x) = xn (C.7)

be the nth-projection.
An elementary measurable rectangle is a set of the form

RA
n = π−1

n (A) = {x ∈ X | xn ∈ A}, where n ∈ Z, A ∈ Bn.

A measurable rectangle is a set of the form

RA1,...,At
n1,...,nt

= {x ∈ X | xni ∈ Ai for all i = 1, . . . , t} =
t⋂
i=1

RAi
ni
,

where t ≥ 1, n1 < n2 < . . . < nt ∈ Z, and Ai ∈ Bni for all i = 1, . . . , t.
The product σ-algebra, denoted by

⊗
n∈Z Bn, is the σ-algebra generated by the set

of all measurable rectangles. We write(
X,B =

⊗
n∈Z

Bn

)
=
∏
n∈Z

(Xn,Bn). (C.8)

There is a unique probability measure µ on (X,B) such that

µ(RA1,...,At
n1,...,nt

) =
t∏
i=1

µni(Ai). (C.9)

We write µ =
⊗

n∈Z µn and call it the product of µn, n ∈ Z.
Then (X,B, µ) is a probability space, called the direct product of probability spaces

(Xn,Bn, µn), n ∈ Z. We write(
X,B =

⊗
n∈Z

Bn, µ =
⊗
n∈Z

µn

)
=
∏
n∈Z

(Xn,Bn, µn). (C.10)
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C.5.1 Measures in topological spaces

Let X be a topological space.
The Borel σ-algebra on X, denoted by B(X), is the σ-algebra generated by the open

sets of X. By a Borel (probability) measure on X we shall understand a probability
(measure) µ : BX → [0, 1]. By a Borel (probability) space we mean a probability space
(X,B)X), µ), where µ is a Borel (probability) measure on X.

If X and Y are Borel spaces, a measurable mapping T : X → Y is called Borel
measurable.

Proposition C.5.1. Let Y ⊆ X. Then B(Y ) = Y ∩ B(X).

Proof. See [85, Theorem 1.9, p.5].

Proposition C.5.2. [86, Proposition 2.3.4] Let X be a compact space and let A be an
algebra of clopen subsets of X. Then any finitely additive set function µ : A → [0,∞] is
countably additive.

Proof. Let (An)n≥1 be a sequence of disjoint sets in A such that A =
⋃
n≥1

An is in A. We

have to show that µ
(⋃

n≥1An
)

=
∑∞

n=1 µ(An).
Since A is compact as a closed subset of the compact space X, by B.10.8, we get N ≥ 1

such that An = ∅ (hence µ(An) = 0) for all n ≥ N .
Using the fact that µ is finitely additive, it follows that

µ

(
∞⋃
n=1

An

)
= µ

(
N⋃
n=1

An

)
=

N∑
n=1

µ(An) =
∑
n≥1

µ(An). (C.11)

C.6 Extensions of measures

Let C be a collection of subsets of X containing ∅ and µ : C → [0,∞] be a set function
such that µ(∅) = 0. Define µ? : P(X)→ [0,∞] by

µ?(A) = inf

{
∞∑
n=1

µ(An) | A1, A2 . . . ∈ C, A ⊆
⋃
n≥1

An

}
. (C.12)

If it happens to be the case that there is no sequence of sets in C whose union contains A,
we define µ?(A) =∞.

Let µ̃ : σ(C)→ [0,∞] be the restriction of µ? to σ(C).

Theorem C.6.1 (Carathéodory Extension Theorem).
Let S be a semiring on X and µ : S → [0,∞] be finitely additive and countably subadditive.
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(i) µ̃ is a measure on σ(C) that extends µ, i.e. µ̃(A) = µ(A) for all A ∈ S.

(ii) If µ is σ-finite on S, then µ̃ is the unique measure on σ(S) extending µ. Furthermore,
µ̃ is also σ-finite.

Proof. See [116, p. 75] and [116, Claim 3, p.85].

Theorem C.6.2. Let A be an algebra on X and µ : A → [0,∞] be countably additive.
Then

(i) µ̃ is a measure on σ(A) that extends µ.

(ii) If µ is σ-finite on A, then µ̃ is the unique measure on σ(A) extending µ. Furthermore,
µ̃ is also σ-finite.

(iii) If µ(X) = 1, then µ̃ is a probability measure.

Proof. See [116, Exercise 6, p. 81] or [120, Theorem 0.3, p.4].

C.7 Measurable mappings

Definition C.7.1. Let (X,B), (Y, C) be measurable spaces. A mapping T : X → Y is said
to be measurable if T−1(C) ⊆ B.

We should write T : (X,B)→ (Y, C) since the measurability property depends on B, C.

Proposition C.7.2. Let (X,B) and (Y, C) be measurable spaces.

(i) Let T : X → Y . The following are equivalent

(a) T is measurable.

(b) T−1(A) ∈ B for every each A ∈ A, where A is a collection of subsets of Y that
generates C.

Proof. See [116, (MF1’), p.206].

Proposition C.7.3. Let (X,B) and (Y, C) be measurable spaces.

(i) 1X : X → X is measurable.

(ii) The composition of measurable functions is measurable.

Notation C.7.4. Let (X,B) be a measurable space.

(i) MC(X,B) is the set of all complex-valued measurable functions f : (X,B)→ (C,B(C)).

(ii) MR(X,B) is the set of all real-valued measurable functions f : (X,B)→ (C,B(R)).
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Proposition C.7.5. Let (X,B) be a measurable space and f : X → C. The following are
equivalent

(i) f is measurable.

(ii) both its real and imaginary parts are measurable.

Proof.

See [99, 1.9 (a),(b), p.11].

Proposition C.7.6. Let (X,B) be a measurable space.

(i) A ⊆ X is measurable if and only if its characteristic function χA : X → R is
measurable.

(ii) If f : X → C is measurable, then so is |f |.

(iii) If f, g : X → C are measurable, then so are f + g and fg.

(iv) If f : X → C is measurable and c > 0, and g : X → R is defined by g(x) = |f(x)|c,
then g is measurable.

(v) If f, g : X → C are measurable, then {x ∈ X | f(x) > g(x)}, {x ∈ X | f(x) ≥ g(x)},
{x ∈ X | f(x) = g(x)}, {x ∈ X | f(x) 6= g(x)} are measurable.

(vi) If fn : X → R is measurable for n ≥ 1, then sup
n≥1

fn, inf
n≥1

fn, lim sup
n→∞

fn, lim inf
n→∞

fn are

measurable. If lim
n→∞

fn exists, then lim
n→∞

fn is measurable.

(vii) If f, g : X → R are measurable, then max{f, g}, min{f, g} are also measurable.

(viii) If f : X → R is measurable, then

f+, f− : X → R, f+(x) = max{f(x), 0}, f−(x) = −min{f(x), 0} (C.13)

are measurable.

Proof. (i) See [99, 1.9 (d), p.11] or [116, (MF3), p.167].

(ii) See [99, 1.9 (b), p.11].

(iii) See [99, 1.9 (c), p.11].

(iv) See [116, (MF7).(c), p.172].

(v) See [116, (MF8), p.173].

(vi) See [116, (MF11), p.180].

(vii) See [99, Corollaries, p.15].
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(viii) See [99, Corollaries, p.15].

The nonnegative functions f+, f− are called the positive and negative parts of f .
We have that

f = f+ − f−, |f | = f+ + f−. (C.14)

C.8 Almost everywhere and equal modulo sets of mea-

sure 0

Definition C.8.1. Let f, g : X → C be measurable. We say that f and g are equal
almost everywhere, and write f = g a.e., if µ{x ∈ X | f(x) 6= g(x)} = 0.

Definition C.8.2. Let A,B be two measurable sets. We say that A and B are equal
modulo sets of measure 0, and write A ∼ B, if after removing a set of measure 0 from
A and a set of measure 0 from B we obtain the same set, i.e. A = A′ ∪C,B = B′ ∪C and
µ(A′) = µ(B′) = 0.

Remark C.8.3. A ∼ B if and only if µ(A∆B) = 0.

C.9 Simple functions

Let (X,B) be a measurable space.

Definition C.9.1. A function s : X → C is said to be simple if it has finitely many
different values.

Proposition C.9.2. Let s : X → C be a simple function, s(X) = {c1, . . . , cn}, and denote
Ai = {x ∈ X | s(x) = ci} for all i = 1, . . . , n. Then

(i) s =
∑n

i=1 ciχAi.

(ii) s is measurable if and only if A1, . . . , An are measurable.

Proof. See [99, p.15] or [116, (MF16), p.185].

Theorem C.9.3. Let f : X → R be measurable with f ≥ 0. There exists a sequence
(sn)n≥1 of measurable simple functions sn : X → R such that

(i) 0 ≤ s1 ≤ s2 ≤ . . . ≤ f .

(ii) lim
n→∞

sn(x) = f(x) for all x ∈ X.

Proof. See [99, Theorem 1.17, p.15].
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C.10 Integration

Let (X,B, µ) be a measure space.

C.10.1 Simple functions

If s : X → C is a measurable simple function of the form

s =
n∑
i=1

ciχAi ,

where c1, . . . , cn are the distinct values of s, and if E ∈ B, we define∫
E

s dµ =
n∑
i=1

ciµ(Ai ∩ E). (C.15)

The convention 0 · ∞ = 0 is used here; it may happen that ci = 0 for some i and that
µ(Ai ∩ E) =∞.

C.10.2 Nonnegative functions

Suppose that f : X → R is measurable and f ≥ 0. For any E ∈ B we define∫
E

f dµ = sup
s∈Sf

∫
E

s dµ, (C.16)

where Sf is the set of all simple measurable functions s such that 0 ≤ s ≤ f .
The left member of (C.16) is called the Lebesgue integral of f over E, with respect

to the measure µ. It is a number in [0,∞].

Proposition C.10.1 (Equivalent definition).
For every E ∈ B, ∫

E

f dµ = lim
n→∞

∫
E

sn dµ,

where (sn) is any increasing sequence of measurable simple functions in Sf such that
lim
n→∞

sn(x) = f(x) for all x ∈ X.

Proof. [116, Ex.10, p.230-231].

Proposition C.10.2. Let f, g : X → R be measurable and nonnegative, A,B ⊆ X be
measurable.

(i) If f ≤ g, then
∫
A
f dµ ≤

∫
A
g dµ.
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(ii) If A ⊆ B, then
∫
A
f dµ ≤

∫
B
f dµ.

Proof. See [99, 1.24, p.20].

Proposition C.10.3 (Fatou’s Lemma).
If fn : X → [0,∞) is measurable for n ≥ 1, then∫

X

lim inf
n

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ (C.17)

Proof. See [99, Theorem 1.28, p.21].

C.10.3 Complex-valued functions

Definition C.10.4. We define L1(X,B, µ) (or L1(µ)) to be the collection of all measurable
functions f : X → C for which ∫

X

|f | dµ <∞. (C.18)

Remark that |f | : X → R is a nonnegative measurable function, hence the above
integral is defined.

The members of L1(X,B, µ) are called the Lebesgue integrable functions (with re-
spect to µ).

Definition C.10.5. If f = u+ iv, where u and v are real measurable functions on X, and
if f ∈ L1(X,B, µ), we define for every measurable subset E of X,∫

E

f dµ =

∫
E

u+ dµ−
∫
E

u− dµ+ i

(∫
E

v+ dµ−
∫
E

v− dµ

)
(C.19)

Here u+, u− (resp. v+, v−) are the positive and negative parts of u (resp. v). These
four functions are measurable, real, and nonnegative; hence the four integrals on the right
of (C.19) exist. Furthermore, u+ ≤ |u| ≤ |f |, etc., so that each of these four integrals is
finite. Thus

∫
E
f dµ is a complex number.

Proposition C.10.6. Let f, g : X → C and α, β ∈ C.

(i) f is integrable if and only if |f | is integrable.

(ii) If f, g ∈ L1(X,B, µ), then (αf + βg) ∈ L1(X,B, µ), and∫
X

(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ. (C.20)

(iii) If f ∈ L1(X,B, µ), then ∣∣∣∣∫
X

f dµ

∣∣∣∣ ≤ ∫
X

|f | dµ. (C.21)
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Proof. (i) Obviously, by definition.

(ii) See [99, Theorem 1.32, p.25].

(iii) See [99, Theorem 1.33, p.26].

Theorem C.10.7 (Lebesgue’s Dominated Convergence Theorem).
Let (fn)n≥1 denote a sequence of complex measurable functions on X such that

(i) f(x) = lim
n→∞

fn(x) exists for every x ∈ X.

(ii) there is g ∈ L1(X,B, µ) with |fn(x)| ≤ g(x) for every n ≥ 1, and every x ∈ X.

Then

(i) f ∈ L1(X,B, µ),

(ii) lim
n→∞

∫
X

|fn − f | dµ = 0, and

(iii) lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Proof. See [99, Theorem 1.34, p.26].

C.10.4 Real-valued functions

Definition C.10.8. We define L1
R(X,B, µ) to be the collection of all measurable functions

f : X → R for which ∫
X

|f | dµ <∞. (C.22)

Proposition C.10.9. Let f, g ∈ L1
R(X,B, µ) and A ⊆ X be measurable.

(i) If f = g a.e. on A, then
∫
A
f dµ =

∫
A
g dµ.

(ii) If f ≤ g a.e. on A, then
∫
A
f dµ ≤

∫
A
g dµ.

(iii) If µ(A) = 0 or f = 0 a.e. on A, then
∫
A
f dµ = 0.

(iv) If E1, E2, . . . , En are pairwise disjoint measurable sets, then∫
∪ni=1Ei

f dµ =
n∑
i=1

∫
Ei

f dµ.

In particular,
∫
X
f dµ =

∫
E
f dµ+

∫
X\E f dµ.
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(v) If (En)n≥1 is an increasing sequence of measurable sets and E =
⋃
n≥1En, then∫

E

f dµ = lim
n→∞

∫
En

f dµ. (C.23)

Proof. (i) See [116, (G5), p.236].

(ii) See [116, (G6), p.237].

(iii) See [116, (G1), p.237].

(iv) See [116, (G2), p.237].

(v) See Seminar 6.

C.11 Lp-spaces

In the sequel, (X,B, µ) is a measure space. If 0 < p <∞ and if f : X → C is a measurable
function, define

‖f‖p =

(∫
X

|f |p dµ
)1/p

. (C.24)

Let

Lp(X,B, µ) = {f : X → C | f is measurable and

∫
X

|f |p dµ <∞}. (C.25)

We call ‖f‖p the Lp-norm of f . We shall denote with LpR(X,B, µ) the real-valued members
of Lp(X,B, µ).

We shall identify two functions f, g ∈ Lp(X,B, µ) if they are equal almost everywhere
and use the same notation Lp(X,B, µ) for the quotient set. Thus, Lp(X,B, µ) is a space
whose elements are equivalence classes of functions.

Theorem C.11.1 (Riesz-Fischer Theorem).
For every 1 ≤ p <∞, (Lp(X,B, µ), ‖ · ‖p) is a complex Banach space, and (LpR(X,B, µ), ‖ ·
‖p) is a real Banach space.

Proof. See [99, Thm. 3.11, p.70] or, for the real case, [116, p.303].

Proposition C.11.2. L2(X,B, µ) is a complex Hilbert space, with the scalar product

〈f, g〉 =

∫
X

fg dµ. (C.26)

L2
R(X,B, µ) is a real Hilbert space.

Proof. See [99, p.78].
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C.11.1 L∞

Let (X,B, µ) be a measure space.

Definition C.11.3. Let f : X → R be measurable. The essential supremum of f on
X is defined by

ess supf := inf{M ≥ 0 | |f | ≤M a.e.} (C.27)

= inf{α ≥ 0 | µ({x ∈ X | |f(x)| > α}) = 0}. (C.28)

It can be seen that both sets in the definition of the ess sup f coincide and hence have
the same infimum. Note that +∞ is in both sets, hence the infima above are never taken
over the empty set.

Definition C.11.4. Let L∞(X,B, µ) denote the collection of all f ∈ MR(X,B) with
ess supf <∞. A function f ∈ L∞(X,B, µ) is called essentially bounded.

Theorem C.11.5. Define ‖f‖∞ := ess supf for all f ∈ L∞(X,B, µ). Then (L∞(X,B, µ), ‖·
‖∞) is a Banach space.

Proof. See [116, p.314].

C.11.2 Containment relations

Let (X,B, µ) be a measure space. It is natural to ask whether there are any containment
relations between Lp and Lq, where p and q are distinct positive numbers. It is easy to
construct situations where 0 < p < q < ∞, but Lp 6⊆ Lq and Lq 6⊆ Lp. See [116, Exercise
1, p.319].

Proposition C.11.6. Assume that µ(X) <∞ and let 0 < p < q ≤ ∞. Then

(i) Lq ⊆ Lp.

(ii) If f ∈ Lp (and hence f ∈ Lq), then

‖f‖p ≤ ‖f‖q · µ(X)
1
p
− 1
q . (C.29)

In particular, if µ(X) = 1, then ‖f‖p ≤ ‖f‖q.

Proof. See [116, Claim 1, p.316].

C.12 Modes of convergence

Let (X,B, µ) be a measure space and let (fn) be a sequence in MC(X,B). Also let f ∈
MC(X,B).

Definition C.12.1. We consider the following notions of convergence:
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(i) (fn) converges to f a.e. if lim
n→∞

fn(x) = f(x) a.e..

(ii) (fn) converges to f in measure if lim
n→∞

µ({x ∈ X | |fn(x)− f(x)| > ε) = 0 for all

ε > 0. We will also say that fn → f in L0 or fn
µ→ f .

(iii) (fn) converges to f in Lp if f ∈ Lp, fn ∈ Lp for all n and lim
n→∞

‖fn − f‖p = 0.

We define similarly the corresponding notions of Cauchy sequences.

Proposition C.12.2 (Relations between modes of convergence). [25, Section 10.2]

(i) Convergence in measure implies almost everywhere convergence for some subsequence.

(ii) For all 0 < p <∞, Lp-convergence implies convergence in measure. The converse is
not true.

(iii) Neither Lp-convergence nor convergence µ-a.e. implies the other.

Proof. (i) See [116, Claim 1, p.189].

(ii) See [116, Claim 2, p.331] and [116, Exercise 2, p.340].

(iii) See [116, Exercises 3,4, p.340].

Proposition C.12.3 (Relations between modes of convergence-finite measure). Assume
that µ(X) <∞. Then

(i) Almost everywhere convergence implies convergence in measure.

(ii) For all 0 < p < q ≤ ∞, Lq-convergence implies Lp-convergence.

Proof. (i) See [116, Claim 3, p.191].

(ii) By C.11.6.(ii).
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Appendix D

Topological groups

References for topological groups are, for example, [78] or [53].

Definition D.0.4. Let G be a set that is a group and also a topological space. Suppose
that

(i) the mapping (x, y) 7→ xy of G×G onto G is continuous.

(ii) the mapping x 7→ x−1 of G onto G is continuous.

Then G is called a topological group.

Definition D.0.5. A compact group is a topological group whose topology is compact
Hausdorff.

Example D.0.6. (i) Every group is a topological group when equipped with the dis-
crete topology.

(ii) All finite groups are compact groups with their discrete topology.

(iii) The additive group R of real numbers is a Hausdorff topological group which is not
compact.

(iv) More generally, the additive group of the euclidean space Rn is a Hausdorff topological
group.

(v) The multiplicative group R? = R \ {0} with the induced topology is a topological
group.

(vi) The multiplicative group C? = C\{0} of nonzero complex numbers with the induced
topology is a topological group.

(vii) The unit circle S1 = {z ∈ C | |z| = 1} with the group operation being multiplication
is a compact group, called the circle group.

113
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In the sequel, G is a topological group. For every a ∈ G, let us define the maps

La : G→ G, La(x) = ax, Ra : G→ G, Ra(x) = xa.

La is called the left translation by a, while Ra is the right translation by a.

Proposition D.0.7. Left and right translations are homeomorphisms of G. Thus, for all
a ∈ G, (La)

−1 = La−1 and (Ra)
−1 = Ra−1.
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[29] P. Erdös, A. Hajnal, A. Máté, R. Rado, Combinatorial Set Theory: Partition Relations
for Cardinals, Studies in Logic and Foundations of Mathematics 106, North-Holland,
Amsterdam, 1984.

[30] P. Erdös, R. Rado, Combinatorial theorems on classification of subsets of a given set,
Proc. London Math. Soc. 2 (1952), 417-439.



BIBLIOGRAPHY 117

[31] P. Erdös, P. Turán, On Some Sequences of Integers, J. London Math. Soc. 11 (1936),
261-264.

[32] D. Evans, D. Searles, The fluctuation theorem, Advances in Physics 51 (2002), 1529-
1585.

[33] B. Farkas, T. Eisner, M. Haase, R. Nagel, Ergodic Theory - An Operator-theoretic
approach, 12th International Internet Seminar, February 16, 2009.

[34] N. Frantzikinakis, R. McCutcheon, Ergodic theory: recurrence, arXiv:0705.0033v2
[math.DS]; to appear in the Encyclopedia of Complexity and System Science.

[35] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemeredi
on arithmetic progressions. J. Analyse Math. 31 (1977), 204–256.

[36] A. Friedman, Foundations of Modern Analysis, Dover, 1982.

[37] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory. M.
B. Porter Lectures. Princeton University Press, Princeton, N.J., 1981.

[38] H. Furstenberg, Y. Katznelson, An ergodic Szemerédi theorem for commuting trans-
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